50 points !!
solve only if u know
wrong answers will be reported !!!
Answers
We know that,
cos2x= (1-tan^2x)/(1+tan^2x)
cosx= (1-tan^2(x/2))/(1+tan^2(x/2))
sin2x= (2tanx)/(1+tan^2x)
sinx=(2tan(x/2)/(1+tan^2(x/2))
To prove:
tan^-1(cosx/1+sinx)= π/4-x/2, x€(-π/2,π/2)
Proof:
LHS:
tan^-1(cosx/1+sinx)
tan^-1((1-tan^2(x/2)/1+tan^2(x/2))/ (2tan(x/2)/1+tan^2(x/2)))
tan^-1(1-tan^2(x/2)/1+tan^2(x/2)+2tan(x/2))
Applying formula a^2-b^2=(a+b)(a-b)
tan^-1(1+tan(x/2)(1-tan(x/2)/(1+tan(x/2)^2)
tan^-1(1-tan(x/2)/1+tan(x/2)) --------------(1)
tan(x-y)= tanx-tany/1+tanxtany
tan(45-x)=tan45°-tanx/1+tan45°tanx
tan45°=1
tan(45°-x)=1-tanx/1+1×tanx
Applying same concept in eqn (1) we get
tan^-1(tan(45°-(x/2))
tan^-1 and tan will cancel out ,
45°-x/2
45° in radian is π/4.
(Formula for converting 45° to radian π×45°/180=π/4)
Therefore LHS
π/4-x/2 where x€(-π/2,π/2)
RHS
π/4-x/2 where x€(-π/2,π/2)
Hence Proved
tan-1[cosx / (1+sinx)]
=tan-1[ sin(π/2 - x) / (1+cos(π/2 - x))]
Let t=π/2-x
=tan-1[ sint / (1+cost)]
=tan-1[2sin(t/2) cos(t/2) / (2 cos2(t/2))] {since sin2x=2sinx cosx and 1+cos2x=2cos2x }
=tan-1[sin(t/2)/cos(t/2)]
=tan-1[tan(t/2)]
=t/2
=(π/2 - x)/2
=π/4 - x/2
Q.E.D
____________________________________________________
<Judge It Yourself...>
Hope it helps you! ヅ
✪ Be Brainly ✪