Math, asked by nainanjaligmailcom, 1 year ago

508. In an arithmetic progression, if
17 is the 3rd term, -25 is the 17th
term, then -1 is which term?
एक समांतर श्रेणी में, यदि 17 तीसरा पद है,
-25 17 वां पद है, तो -1 कौन सा पंद है?
(a) 10 (b) 11 (c)9 (d) 12​

Answers

Answered by hanusaxena68gm12
43

Answer:

see the image for answer

Attachments:
Answered by BrainlyConqueror0901
82

{\bold{\underline{\underline{Answer:}}}}

{\bold{\therefore n=9}}

{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \underline \bold{Given : } \\  \implies  a_{3}  = 17 \\  \\ \implies  a_{17}  =  - 25 \\  \\  \implies a _{n}   =  - 1  \\ \\  \underline \bold{To \: Find : } \\ \implies  n = ?

\bold{For \: a _{3}}\\  \implies a_{3} = 17 \\  \\  \implies a + 2d = 17 -  -  -  -  - (1) \\ \\    \bold{For \: a _{17}}\\  \implies  a_{17} =  - 25 \\  \\ \implies  a + 16d =   - 25 -  -  -  -  - (2) \\  \\  \bold{Subtracting \: (2) \: from \: (1)} \\  \implies a + 2d - a - 16d = 17 - ( - 25) \\  \\  \implies  - 14d = 42 \\  \\  \implies d =  \frac{ - 42}{14}  \\  \\   \bold{\implies d = - 3} \\  \\  \bold{Putting \: value \: of \: d \: in \: (1)} \\ \implies a + 2d = 7 \\  \\  \implies a + 2 \times  - 3 = 7 \\  \\  \implies a  - 6 = 7 \\  \\  \implies a = 17 + 6 \\   \\   \bold{ \implies a = 23} \\  \\  \bold{For \: finding \: number \: of \: term } \\  \implies  a_{n}  = a + (n - 1)d \\  \\  \implies   - 1 = 23 + (n - 1) \times  - 3 \\  \\  \implies  - 1 - 23 =  - 3  n+ 3 \\  \\  \implies  - 24  - 3 =  - 3n\\\\\implies n=\frac{-27}{-3}\\\\\bold{\implies n=9 }

Similar questions