Math, asked by pramku786ku, 3 months ago

52. Find the foot of the perpendicular draw from the point p(1, 6, 3) on the line
X y-1
1 2
Z-2
3
Also find its distance from P.​

Answers

Answered by knjroopa
0

Step-by-step explanation:

Given Find the foot of the perpendicular drawn from the point p(1, 6, 3) on the line x/1 = y - 1/2 = z - 2/2

Also find its distance from P.​

  • Let the coordinate of the foot of the perpendicular from the point P(1,6,3) on the line be Q (l1,m1,n1)
  • So x/1 = y – 1 / 2 = x – 2/2------------- 1
  • Since point Q lies on the line 1 we have
  • So l1/1 = m1 – ½ = n1 – 2 / 2 = k
  • So we get
  • l1 = k, m1 = 2k + 1, n1 = 2k + 2---------2
  • So the direction ratios of perpendicular line PQ will be
  • a1 = k – 1
  • b1 = 2k + 1 – 6
  •     = 2k – 5
  • c1 = 2k + 2 – 3
  •      = 2k – 1
  • The direction ratios of the given line will be  
  • a2 = 1, b2 = 2, c2 = 2
  • Since the line PQ is perpendicular to given line,
  • a1a2 + b1b2 + c1c2 = 0
  • So 1 (k – 1) + 2 (2k – 5) + 2(2k – 1) = 0
  • So k – 1 + 4k – 10 + 4k – 2 = 0
  •        9k – 13 = 0
  •        9k = 13
  •        k = 13/9
  • Substituting the value of k in eqn 2 we get
  •          l1 = 13/9
  •          m1 = 2(13/9) + 1
  •                = 26 / 9 + 1
  •                   = 35/9
  • n1 = 2(13/9) + 2
  •       = 26/9 + 2
  •       = 44/9
  • So the coordinates of the foot of the perpendicular will be (13/9, 35/9, 44/9)
  • Now distance from the point p will be
  • PQ = √(1 – 13/9) ^2 + (6 – 35/9)^2 + (3 – 44/9)^2
  •      = √ (-4/9)^2 + (19/9)^2 + (-17/9)^2
  •      = √16/81 + 361/81 + 289/81
  •      = √666 / 81
  •      = 25.8 / 9
  •      = 2.866                                          

Reference link will be

https://brainly.in/question/16836084

Similar questions