Math, asked by alyaan85, 10 months ago

5m - 3n = 19; m
- 6n = -7​

Answers

Answered by annamaryjoseph977
2

Answer:

Step  1  :

           19

Simplify   ——

           6  

Equation at the end of step  1  :

   5     3      19

 ((—•m)+(—•m))-(——•m)  = 0  

   3     2      6  

Step  2  :

           3

Simplify   —

           2

Equation at the end of step  2  :

   5          3          19m

 ((— • m) +  (— • m)) -  ———  = 0  

   3          2           6  

Step  3  :

           5

Simplify   —

           3

Equation at the end of step  3  :

   5         3m     19m

 ((— • m) +  ——) -  ———  = 0  

   3         2       6  

Step  4  :

Calculating the Least Common Multiple :

4.1    Find the Least Common Multiple

     The left denominator is :       3  

     The right denominator is :       2  

       Number of times each prime factor

       appears in the factorization of:

Prime  

Factor   Left  

Denominator   Right  

Denominator   L.C.M = Max  

{Left,Right}  

3 1 0 1

2 0 1 1

Product of all  

Prime Factors  3 2 6

     Least Common Multiple:

     6  

Calculating Multipliers :

4.2    Calculate multipliers for the two fractions

   Denote the Least Common Multiple by  L.C.M  

   Denote the Left Multiplier by  Left_M  

   Denote the Right Multiplier by  Right_M  

   Denote the Left Deniminator by  L_Deno  

   Denote the Right Multiplier by  R_Deno  

  Left_M = L.C.M / L_Deno = 2

  Right_M = L.C.M / R_Deno = 3

Making Equivalent Fractions :

4.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

  L. Mult. • L. Num.      5m • 2

  ——————————————————  =   ——————

        L.C.M               6    

  R. Mult. • R. Num.      3m • 3

  ——————————————————  =   ——————

        L.C.M               6    

Adding fractions that have a common denominator :

4.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

5m • 2 + 3m • 3     19m

———————————————  =  ———

       6             6  

Equation at the end of step  4  :

 19m    19m

 ——— -  ———  = 0  

  6      6  

Step  5  :

Adding fractions which have a common denominator :

5.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

19m - (19m)     0

———————————  =  —

     6          6

Equation at the end of step  5  :

 0  = 0  

Step  6  :

Equations which are always true :

6.1    Solve   0  = 0This equation is a tautology (Something which is always true)

Step-by-step explanation:

Answered by BlackWizard
1

Answer:

5m – 3n = 19 .....(I)

m – 6n = –7 .....(II)

Multiplying (I) with 2 we get

10m – 6n = 38 .....(III)

m – 6n = –7 .....(IV)

Subtracting (IV) from (III) we get

10m-m-6n-(-6n)=38-(-7)

⇒9m=45

⇒m=45/9

=5

Putting the value of m = 5 in (II) we get

5-6n=-7⇒-6n=-7-5

⇒-6n=-12

⇒n=-12/-6

=2

Thus, (m, n) = (5, 2).

Similar questions