Math, asked by 824shreyaaa, 1 year ago

5sinA +12 cosA =13 find tanA

Answers

Answered by MaheswariS
2

\textbf{Given:}

5\;sinA+12\;cosA=13

\textbf{To find: tanA}

5\;sinA+12\;cosA=13

\text{Squaring on bothsides we get}

(5\;sinA+12\;cosA)^2=169

25\;sin^2A+144\;cos^2A+120\;sinA\;cosA=169

25(1-cos^2A)+144(1-sin^2A)+120\;sinA\;cosA=169

25-25\;cos^2A+144-144\;sin^2A)+120\;sinA\;cosA=169

-25\;cos^2A-144\;sin^2A+120\;sinA\;cosA=0

25\;cos^2A+144\;sin^2A-120\;sinA\;cosA=0

(12\;sinA-5\;cosA)^2=0

12\;sinA-5\;cosA=0

\text{Now, we have two equations}

5\;sinA+12\;cosA-13=0

12\;sinA-5\;cosA-0=0

\text{We apply cross multiplication rule to solve the equations}

\displaystyle\frac{sinA}{0-65}=\frac{cosA}{-156-0}=\frac{1}{-25-144}

\displaystyle\frac{sinA}{-65}=\frac{cosA}{-156}=\frac{1}{-169}

\implies\displaystyle\;sinA=\frac{-65}{-169}=\frac{5}{13} \;\text{and}

\implies\displaystyle\;cosA=\frac{-156}{-169}=\frac{12}{13}

tanA=\displaystyle\frac{sinA}{cosA}

tanA=\displaystyle\frac{\frac{5}{13}}{\frac{12}{13}}

\implies\boxed{\bf\,tanA=\displaystyle\frac{5}{12}}

\textbf{Find more:}

1.If 6 tan A -5 = 0 find the value of( 3 Sin A - Cos A) / (5 Cos A + 9 sin A)

https://brainly.in/question/5331430

2.CotA+cosecA=3,then find sinA=?​

https://brainly.in/question/14998903

Similar questions