Math, asked by Manjuprajapati, 1 year ago

if x is equal to 3 minus 2 root 2 then find the value of x square minus one upon x square

Answers

Answered by presentmoment
113

\bold{x^{2}-\frac{1}{x^{2}}=-24 \sqrt{2}} If \bold{x=3-2 \sqrt{2}}

Given:

x=3-2 \sqrt{2}

To find:  

x^{2}-\frac{1}{x^{2}}=?

Solution:

The value of x=3-2 \sqrt{2} is given in the question and by finding the value of x^2 and \frac{1}{x^2}and substituting the value of each term. Then the value of x^{2}-\frac{1}{x^{2}} is obtained.

Let us consider \frac{1}{x}=\frac{1}{3-2 \sqrt{2}}

Rationalising the denominator gives  

\begin{array}{l}{=\frac{1}{3-2 \sqrt{2}} \times \frac{3+2 \sqrt{2}}{3+2 \sqrt{2}}} \\ {=\frac{3+2 \sqrt{2}}{3^{2}-(2 \sqrt{2})^{2}}} \\ {=\frac{3+2 \sqrt{2}}{9-8}} \\ {=3+2 \sqrt{2}}\end{array}

Now, x^{2}-\frac{1}{x^{2}}=(3-2 \sqrt{2})^{2}-(3+2 \sqrt{2})^{2}

Applying the algebraic formula (a-b)^2 =a^2+b^2-2ab

=3^{2}+(2 \sqrt{2})^{2}-2 \times 3 \times 2 \sqrt{2}-\left(3^{2}+(2 \sqrt{2})^{2}+2 \times 3 \times 2 \sqrt{2}\right)

Simplifying the formula and terms we get

\begin{array}{l}{=9+8-12 \sqrt{2}-9-8-12 \sqrt{2} |} \\ {=-24 \sqrt{2}}\end{array}

Therefore, \bold{x^{2}-\frac{1}{x^{2}}=-24 \sqrt{2}}  if \bold{x=3-2 \sqrt{2}.}

Answered by malo5912
29

Step-by-step explanation:

Hope it helps mark brainliest

Attachments:
Similar questions