Math, asked by raunaksingh6201, 9 months ago

5x^2+3x-2=0 solved by factor and completing the square​

Answers

Answered by Rose08
5

Solution :-

\sf 5{x}^{2} + 3x - 2 = 0

\sf\rightarrow 5{x}^{2} + (5 - 2)x - 2 = 0

\sf\rightarrow 5{x}^{2} + 5x - 2x - 2 = 0

\sf\rightarrow 5x(x + 1) - 2(x + 1) = 0

\sf\rightarrow (5x - 2)(x + 1) = 0

\sf\therefore Either, (5x - 2) = 0 \: or, (x + 1) = 0

\sf Solving \: for \: the \: value \: of \: x,

\sf\rightarrow 5x - 2 = 0

\sf\rightarrow 5x = 2

\sf\therefore x = \dfrac{2}{5}

_________________________________

\sf\rightarrow x + 1 = 0

\sf\therefore x = -1

_________________________________

\sf\therefore Required \: value \: of \: x = \: \dfrac{2}{5} \: or, \: -1

Now, Verifying if the values of x satisfies the equation,

\sf\rightarrow 5 \times {\dfrac({2}{5})}^{2} + 3 \times \dfrac{2}{5} - 2 = 0

\sf\rightarrow 5 \times \dfrac{4}{25} + \dfrac{6}{5} - 2 = 0

\sf\rightarrow \dfrac{20}{25} + \dfrac{6}{5} - 2 = 0

\sf\rightarrow \dfrac{4}{5} + \dfrac{6}{5} - 2 = 0

\sf\rightarrow \dfrac{4 + 6 - 10}{5} = 0

\sf\rightarrow \dfrac{10 - 10}{5} = 0

\sf\rightarrow \dfrac{0}{5} = 0

\sf\rightarrow 0 = 0

Putting the second value,

\sf\rightarrow 5 \times {-1}^{2} + 3 \times (-1) - 2 = 0

\sf\rightarrow 5 \times 1 + (-3) - 2 = 0

\sf\rightarrow 5 - 3 - 2 = 0

\sf\rightarrow 5 - 5 = 0

\sf\rightarrow 0 = 0

\sf\therefore Verified

Answered by ToxicEgo
1

Answer:

Factorization method:

5x²+3x-2=0

5x²+5x-2x-2=0

5x(x+1) -2(x+1) =0

(5x-2) (x+1) =0

therefore, x=2/5 or -1

Similar questions