Math, asked by lalitbarnagari, 1 day ago

5x^2 - 6x - 2 = 0 By completing the square Method. (Solution)​

Answers

Answered by Unni007
2

Given,

\boxed{\sf{5x^2-6x-2=0}}

The squares can be equated from the equation:

\boxed{\bold{\sf{x=\dfrac{-b \pm \sqrt{b^2-4ac}}{2a}}}}

Here,

  • a = 5
  • b = -6
  • c = -2

\implies \sf{x=\dfrac{6 \pm \sqrt{6^2-(4\times 5\times 2)}}{2\times 5}}

\implies \sf{x=\dfrac{6 \pm \sqrt{36+40}}{10}}

\implies \sf{x=\dfrac{6 \pm \sqrt{76}}{10}}

\implies \sf{x=\dfrac{6 \pm 2\sqrt{19}}{10}}

Dividing by 2:

\implies \sf{x=\dfrac{3 \pm \sqrt{19}}{5}}

\implies \sf{x=\dfrac{3 + \sqrt{19}}{5} \ \ \ \ \ \&\ \ \ \ \ \sf{x=\dfrac{3 - \sqrt{19}}{5}}}

\boxed{\bold{\implies \sf{x=\dfrac{3 + \sqrt{19}}{5} \ \ \ \ \& \ \ \ \ \ \sf{x=\dfrac{3 - \sqrt{19}}{5}}}}}

Similar questions