Math, asked by steeve, 1 year ago

5x^2-8x-4=0 when x belongs to Q. solve the quadratic equation

Answers

Answered by pulakmath007
17

\displaystyle\huge\red{\underline{\underline{Solution}}}

TO SOLVE

The Quadratic equation

 \sf{5 {x}^{2}  - 8x - 4 = 0 \:  \:  \:  \: when \:  \: x \in \:  \mathbb{Q} }

EVALUATION

Here

 \sf{5 {x}^{2}  - 8x - 4 = 0}

 \implies \sf{5 {x}^{2}  - 10x + 2x - 4 = 0}

 \implies \sf{5x( x - 2) + 2(x - 2) = 0}

 \implies \sf{( x - 2) (5x  + 2) = 0}

Which gives

\sf{( x - 2) = 0 \:  \:  \: or \:  \:  \:  (5x  + 2) = 0}

Now

\sf{( x - 2) = 0 \:  \:  gives \:  \: x = 2}

Also

 \displaystyle\sf{( 5x  +  2) = 0 \:  \:  \: gives \:  \: x =  -  \frac{2}{5} }

Hence the required solution is

 \displaystyle \sf{ \: }x =- \frac{2}{5} \:  ,  \: 2 \:  \:  \:  \:  \:  \:  when \: \:  \:  \: x \in \:  \mathbb{Q}

━━━━━━━━━━━━━━━━

LEARN MORE FROM BRAINLY

If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Answered by mantu9000
1

The given quadratic equation:

5x^2 - 8x - 4 = 0

Here, a = 5, b = - 8 and c = - 4

We have to solve the given quadratic equation.

Solution:

∴ Discriminant, D = b^{2} -4ac

= (-8)^2-4(5)(-4)

= 64 + 80

= 144 > 0, the two roots are real and unequal.

x=\dfrac{-b±\sqrt{D} }{2a}

     =\dfrac{-(-8)±\sqrt{144} }{2(5)}

     =\dfrac{8±12 }{10}

    =\dfrac{8+12 }{10}, \dfrac{8-12 }{10}

   =\dfrac{20 }{10}, \dfrac{-4 }{10}

x = 2 or, -\dfrac{2}{5}

Thus, x =  x = 2 or, -\dfrac{2}{5}

Similar questions