Math, asked by pragatijaiswal001, 11 months ago

5x+7y=17 ; 3x-2y=4 solve​

Answers

Answered by Anonymous
139

\huge\underline\mathfrak{Answer-}

\huge\boxed{x=2}

\huge\boxed{y=1}

\huge\underline\mathfrak{Explanation-}

By using elimination method,

5x + 7y = 17 ______(1)

3x - 2y = 7 _______(2)

Multiply, equation (1) by 3 and equation (2) by 5.

\bf\red{(5x+7y=17)} × 3

\implies 15x + 21y = 51 _____(3)

\bf\red{(3x-2y=4)} × 5

\implies 15x - 10y = 20 _____(4)

Subtract equation (4) from (3),

\cancel{15x} + 21y = 51

\cancel{-15x}(+) - 10y = (-)20

_________________

31y = 31

\implies y = \dfrac{31}{31}

\implies y = 1

Now, put the value of y in eq (1),

5x + 7(1) = 17

\implies 5x + 7 = 17

\implies 5x = 17 - 7

\implies 5x = 10

\implies x = \dfrac{10}{5}

\implies x = 2

Answered by prernaranjan1
8

Answer:

X = 2 and Y = 1

Step-by-step explanation:

Similar questions