Math, asked by aditya3953443, 1 year ago

√(5x² - 6x+8) - √(5x2 - 6x - 7) = 1.​

Answers

Answered by ihrishi
6

Answer:

 \sqrt{5 {x}^{2}  - 6x + 8} \:  -  \sqrt{5 {x}^{2}  - 6x  -  7} = 1 \\  \sqrt{5 {x}^{2}  - 6x + 8} = 1 + \sqrt{5 {x}^{2}  - 6x  -  7} \:  \\squiring \: both \: sides \:  \\  (\sqrt{5 {x}^{2}  - 6x + 8}) ^{2} = (1 + \sqrt{5 {x}^{2}  - 6x  -  7})^{2} \:  \\ 5 {x}^{2}  - 6x + 8 = (1)^{2} + (5 {x}^{2}  - 6x  -  7)^{2} + 2(\sqrt{5 {x}^{2}  - 6x  -  7}) \:  \\ 5 {x}^{2}  - 6x + 8 =1 + 5 {x}^{2}  - 6x  -  7+ 2(\sqrt{5 {x}^{2}  - 6x  -  7}) \:  \\ 8 =  - 6 + 2\sqrt{5 {x}^{2}  - 6x  -  7} \:  \\ 8 + 6 = 2\sqrt{5 {x}^{2}  - 6x  -  7} \:  \\ 14 = 2\sqrt{5 {x}^{2}  - 6x  -  7} \:  \\  \frac{14}{2}  = \sqrt{5 {x}^{2}  - 6x  -  7}  \:  \\ 7 =  \sqrt{5 {x}^{2}  - 6x  -  7} \:  \\ squiring \: again \: both \: sides \\ 49 = 5 {x}^{2}  - 6x  -  7 \\ 0 = 5 {x}^{2}  - 6x  -  7 - 49 \\ 5 {x}^{2}  - 6x  -  56 = 0 \\ 5 {x}^{2}  - 20x   + 14x-  56 = 0 \\ 5x(x - 4) + 14(x - 4) = 0 \\ (x - 4)(5x + 14) = 0 \\ x - 4 = 0 \: or \: 5x + 14 = 0 \\ x = 4 \: or \: x =  -  \frac{14}{5}

Similar questions