Math, asked by 34569278, 5 days ago

(6+1​/n)²
expand with the formula ​

Answers

Answered by anindyaadhikari13
2

Solution:

Given expression:-

 \rm  =  { \bigg(6 +  \dfrac{1}{n}  \bigg)}^{2}

We know that:-

 \rm \longrightarrow {(x + y)}^{2}  =  {x }^{2}  + 2xy +  {y}^{2}

Using this identity, we get:-

 \rm={6}^{2} +  \dfrac{1}{ {n}^{2} }  + 2 \times 6 \times \dfrac{1}{n}

 \rm=36 +  \dfrac{1}{ {n}^{2} }  + \dfrac{12}{n}

Therefore:-

 \rm \longrightarrow{ \bigg(6 +  \dfrac{1}{n}  \bigg)}^{2} = 36 +  \dfrac{1}{ {n}^{2} } +  \dfrac{12}{n}

★ Which is our required answer.

Learn More:

Algebraic Identities.

  • (a - b)² = a² - 2ab + b²
  • a² - b² = (a + b)(a - b)
  • (a + b)³ = a³ + 3ab(a + b) + b³
  • (a - b)³ = a³ - 3ab(a - b) - b³
  • a³ + b³ = (a + b)(a² - ab + b²)
  • a³ - b³ = (a - b)(a² + ab + b²)
  • (x + a)(x + b) = x² + (a + b)x + ab
  • (x + a)(x - b) = x² + (a - b)x - ab
  • (x - a)(x + b) = x² - (a - b)x - ab
  • (x - a)(x - b) = x² - (a + b)x + ab
Similar questions