Math, asked by vpanov755, 1 month ago

знайдіть площу сектора круга радіус якого 6 см якщо відповідний йому центральний кут дорівнює 100°​

Answers

Answered by bhagyashreechowdhury
4

Given:

знайдіть площу сектора круга радіус якого 6 см якщо відповідний йому центральний кут дорівнює 100°​

Find the area of ​​a sector of a circle whose radius is 6 cm if the corresponding central angle is 100°

To find:

The area of the sector

Solution:

The radius of the circle, r = 6 cm

The central angle of the circle, θ = 100°

Since the θ given in the question is measured in degrees, so we will use the following formula for calculating the area of the sector:

\boxed{\bold{Area \:of\:a\:sector = \frac{\theta}{360\°} \times \pi r^2}}

Now, by substituting the given values of θ and r in the above formula, we get

The area of the sector of the given circle is,

= \frac{100\° }{360\°} \times \frac{22}{7}  \times 6^2}}

= \frac{100\° }{360\°} \times \frac{22}{7}  \times 36}}

= \frac{100\° }{10\°} \times \frac{22}{7}  }}

= 10 \times \frac{22}{7}

= \frac{220}{7}

= \bold{31.42 \:cm^2}

Thus, the area of ​​a sector of the circle is → 31.42 cm².

-------------------------------------------------------------------------------------------

Also View:

find the area of the sector of a circle with a radius of 10 cm and central angle 60degree. Also, find the corresponding major sector of the circle?

brainly.in/question/2159489

Find the area of a sector of a circle where the central angle is 30° and the radius of the circle is 42 cm.​

brainly.in/question/13221252

Find the area of a sector of a circle and length of the minor arc of radius 21 cm and central angle 120 degree

brainly.in/question/6108112

Answered by alinaparasuk890
0

Answer:

Step-by-step explanation:

Similar questions