Differentiate between mass and weight
Answers
⬇️ANSWER ⬇️
Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.
#kingofhell
Answer:
We often use the words ‘mass’ and ‘weight’ interchangeably, but they mean quite different things. Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.
We often use the words ‘mass’ and ‘weight’ interchangeably, but they mean quite different things. Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.Mass is a measurement of an object’s tendency to resist changing its state of motion, known as inertia. Left to its own devices, an object will stay put or move in a straight line – think of a puck on an air hockey table. Unless some force – like friction, or banging into a wall – acts on the puck, it will keep sliding on the same path forever. Mass is a measure of how much force it will take to change that path.
We often use the words ‘mass’ and ‘weight’ interchangeably, but they mean quite different things. Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.Mass is a measurement of an object’s tendency to resist changing its state of motion, known as inertia. Left to its own devices, an object will stay put or move in a straight line – think of a puck on an air hockey table. Unless some force – like friction, or banging into a wall – acts on the puck, it will keep sliding on the same path forever. Mass is a measure of how much force it will take to change that path.Mass depends on how much matter – atoms and so on – there is in an object; more mass means more inertia, as there is more to get moving. (This is Isaac Newton’s idea of mass, which underpins his famous laws of motion developed in the late 1600s. It is not quite accurate at extremely high speeds, where Albert Einstein’s 20th-century theory of special relativity is required, but it’s fine for most everyday situations.)
We often use the words ‘mass’ and ‘weight’ interchangeably, but they mean quite different things. Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.Mass is a measurement of an object’s tendency to resist changing its state of motion, known as inertia. Left to its own devices, an object will stay put or move in a straight line – think of a puck on an air hockey table. Unless some force – like friction, or banging into a wall – acts on the puck, it will keep sliding on the same path forever. Mass is a measure of how much force it will take to change that path.Mass depends on how much matter – atoms and so on – there is in an object; more mass means more inertia, as there is more to get moving. (This is Isaac Newton’s idea of mass, which underpins his famous laws of motion developed in the late 1600s. It is not quite accurate at extremely high speeds, where Albert Einstein’s 20th-century theory of special relativity is required, but it’s fine for most everyday situations.).
We often use the words ‘mass’ and ‘weight’ interchangeably, but they mean quite different things. Your mass is the same no matter where you go in the universe; your weight, on the other hand, changes from place to place. Mass is measured in kilograms; even though we usually talk about weight in kilograms, strictly speaking it should be measured in newtons, the units of force.Mass is a measurement of an object’s tendency to resist changing its state of motion, known as inertia. Left to its own devices, an object will stay put or move in a straight line – think of a puck on an air hockey table. Unless some force – like friction, or banging into a wall – acts on the puck, it will keep sliding on the same path forever. Mass is a measure of how much force it will take to change that path.Mass depends on how much matter – atoms and so on – there is in an object; more mass means more inertia, as there is more to get moving. (This is Isaac Newton’s idea of mass, which underpins his famous laws of motion developed in the late 1600s. It is not quite accurate at extremely high speeds, where Albert Einstein’s 20th-century theory of special relativity is required, but it’s fine for most everyday situations.)..