Math, asked by namanbrar17, 1 year ago

((-6/11)^-5)^-3 simplify​

Answers

Answered by AbhijithPrakash
3

Answer:

\displaystyle\mathrm{Simplify}\:\left(\left(-\frac{6}{11}\right)^{-5}\right)^{-3}:\quad -\frac{6^{15}}{11^{15}}\quad \left(\mathrm{Decimal:\quad }\:-0.00011\dots \right)

Step-by-step explanation:

\left(\left(-\dfrac{6}{11}\right)^{-5}\right)^{-3}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(a^b\right)^c=a^{bc}}

=\left(-\dfrac{6}{11}\right)^{\left(-5\right)\left(-3\right)}

\gray{\left(-5\right)\left(-3\right)=15}

=\left(-\dfrac{6}{11}\right)^{15}

\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(-a\right)^n=-a^n,\:\mathrm{if\:}n\mathrm{\:is\:odd}}

\displaystyle\gray{\left(-\frac{6}{11}\right)^{15}=-\left(\frac{6}{11}\right)^{15}}

=-\left(\dfrac{6}{11}\right)^{15}

\displaystyle\gray{\mathrm{Apply\:exponent\:rule}:\quad \left(\frac{a}{b}\right)^c=\frac{a^c}{b^c}}

\displaystyle\gray{\left(\frac{6}{11}\right)^{15}=\frac{6^{15}}{11^{15}}}

=-\dfrac{6^{15}}{11^{15}}

Similar questions