Math, asked by shridevivp86, 9 months ago

6+√3/6-√3=a+b√3 answer pls​

Answers

Answered by reeturajmehta
0

Here's your answer

Hope it helps

Please mark as brainlist

Attachments:
Answered by payalchatterje
1

Answer:

Required value of a is  \frac{13}{11} and required value of b is  \frac{4}{11}

Step-by-step explanation:

Given,

 \frac{6 +  \sqrt{3} }{6 -  \sqrt{3} }  = a + b \sqrt{3}  \\ a + b \sqrt{3}  =  \frac{(6 +  \sqrt{3})(6   +   \sqrt{3})}{(6  -  \sqrt{3})(6 +  \sqrt{3})}  \\ a + b \sqrt{3}  =  \frac{ {(6 +  \sqrt{3})}^{2} }{ {6}^{2} -  { \sqrt{3} }^{2}  }  \\ a + b \sqrt{3}  =  \frac{36 + 12 \sqrt{3} + 3 }{36 - 3}  \\ a +  \sqrt{3} b =  \frac{39 + 12 \sqrt{3} }{33}  \\ a +  \sqrt{3} b =  \frac{13 + 4 \sqrt{3} }{11}  \\ a +  \sqrt{3} b =  \frac{13}{11}  +  \frac{4}{11}  \sqrt{3}

We are comparing both side,

a =  \frac{13}{11} and b =  \frac{4}{11}

This is a problem of Algebra.

Some important Algebra formulas:

{(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2} \\  {(x  -  y)}^{2}  =  {x}^{2}   -  2xy +  {y}^{2} \\  {(x  + y)}^{3}  =  {x}^{3}  + 3 {x}^{2} y + 3x {y}^{2}  +  {y}^{3}  \\   {(x   -  y)}^{3}  =  {x}^{3}   -  3 {x}^{2} y + 3x {y}^{2}   -  {y}^{3} \\  {x}^{3}  +  {y}^{3}  =  {(x  +  y)}^{3}  - 3xy(x + y) \\ {x}^{3}   -  {y}^{3}  =  {(x   -   y)}^{3}   +  3xy(x  -  y) \\  {x}^{2}  -  {y}^{2}  = (x + y)(x - y) \\    {x}^{2}  +  {y}^{2}  =  {(x - y)}^{2}   + 2xy \\ {x}^{2}   -  {y}^{2}  =  {(x   + y)}^{2}  - 2xy \\  {x}^{3}  -  {y}^{3}  = (x - y)( {x}^{2}  + xy +  {y}^{2} ) \\ {x}^{3}   +   {y}^{3}  = (x - + y)( {x}^{2}   -  xy +  {y}^{2} )

Know more about Algebra,

1) https://brainly.in/question/13024124

2) https://brainly.in/question/1169549

#SPJ2

Similar questions