Math, asked by bella112, 10 months ago

p(x) = x^3 + 4x^2 + 9 divided by g(x) = x - 20​

Attachments:

Answers

Answered by Anonymous
2

Answer:

By remainder theorem:-

 \bf \: p(x) =  {x}^{3}  -  {4x}^{2}  + 9

 \bf \: g(x) = x - 20

 \bf \: g(x) = 0

 \bf \: x - 20 = 0

 \bf \: x = 20

 \bf \red{sub \: x = 20 \: in \: p(x)}

 \bf \: p(x) =  {x}^{3}  -  {4x}^{2}  + 9

 \bf \: p(20) = {(20)}^{3}   - 4( {20)}^{2}  + 9

\bf \: p(20) =800 - 4(400) + 9

\bf \: p(20) =800 - 1600 + 9

\bf \: p(20) = - 800 + 9

\bf \: p(20) = - 791

\bf \green{remainder \: is \:  - 791}

 \bf \huge \red{Indian} \blue{♡} \green{Army}

Similar questions