Math, asked by devanshlodhamaowf2z6, 1 year ago

{6/5}^x×{5/6}^2x=125/216, find x

Answers

Answered by phillipinestest
205

The value of x is 3 in  \bold{\left(\frac{6}{5}\right)^{x} \times\left(\frac{5}{6}\right)^{2 x}=\frac{125}{216}}

Solution:

The power of the \frac{6}{5} \& \frac{5}{6}  can be equated to find out the term x  

Now to find the term x we need to equal both the terms like changing \frac{6}{5} t o \frac{5}{6} so that we can easily equate the equation.

\begin{array}{l}{\left(\frac{6}{5}\right)^{x} \times\left(\frac{5}{6}\right)^{2 x}=\frac{125}{216}} \\ \\{\left(\frac{5}{6}\right)^{-x} \times\left(\frac{5}{6}\right)^{2 x}=\frac{125}{216}}\end{array}

Taking 5/6 common, we get  

\left(\frac{5}{6}\right)^{-x+2 x}=\frac{125}{216}=\left[\frac{5}{6}\right]^{3}

Placing 125 and 215 as respective cube of 5 and 6 we get ,

\left(\frac{5}{6}\right)^{-x+2 x}=\left[\frac{5}{6}\right]^{3}

As we can see the identity is same, we can equate the powers, after equating the powers we get

-x + 2x = 3

x = 3

Answered by mysticd
111

Answer:

Value \: of \: x = 3

Step-by-step explanation:

\left(\frac{6}{5}\right)^{x}\times \left(\frac{5}{6}\right)^{2x}=\frac{125}{216}

\implies \left(\frac{5}{6}\right)^{-x}\times \left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^{3}

/*

 By\: Exponential\: law:\\\boxed{\left(\frac{a}{b}\right)^{n}=\left(\frac{b}{a}\right)^{-n}}

\implies \left(\frac{5}{6}\right)^{-x}\times \left(\frac{5}{6}\right)^{2x}=\left(\frac{5}{6}\right)^{3}

\implies \left(\frac{5}{6}\right)^{-x+2x}=\left(\frac{5}{6}\right)^{3}

\boxed {x^{a}\times x^{b}=x^{a+b}}

\implies \left(\frac{5}{6}\right)^{x}=\left(\frac{5}{6}\right)^{3}

\boxed {If \: a^{m}=a^{n} \: then \: m = n }

\implies x = 3

Therefore,

Value \: of \: x = 3

•••♪

Similar questions