Math, asked by 1234tt, 10 months ago

(6/5)^x multiply(5/6)^-2x=125/216

Answers

Answered by utsav96
0
Pls mark as brainliest answer
Attachments:
Answered by Anonymous
1

Answer:

\sf\huge \implies: \frac{36}{25}

Step-by-step explanation:

 \sf\huge {( \frac{6}{5} })^{x}  \times  ({ \frac{5}{6} })^{ - 2x}   \\  \\  \sf\ \implies:  \frac{ {6}^{x} }{ {5}^{x} } \times  \frac{ {5}^{ - 2x} }{ {6}^{ - 2x} }  \\  \\  \sf\ \implies: \frac{ {6}^{x} }{ {5}^{x} }   \times  \frac{ {5}^{ -  2}  \times  {5}^{x} }{ {6}^{ - 2} \times  {6}^{x}  }  \\  \\  \sf\ \implies: \frac{ {6}^{x} }{ {5}^{x} } \times  \frac{ \frac{1}{ {5}^{2} }  \times  {5}^{x} }{ \frac{1}{ {6}^{2} } \times  {6}^{x}  }  \\  \\  \sf\ \implies: \frac{ {6}^{x} }{ {5}^{x} } \times  \frac{ \frac{ {5}^{x} }{ {5}^{2} } }{  \frac{ {6}^{x} }{ {6}^{2} } }   \\  \\   \sf\ \implies: \frac{ \cancel{6}^{x} }{ \cancel{5}^{x} } \times  \frac{\cancel {5}^{x} }{ {5}^{2} }  \times   \frac{ {6}^{2} }{  \cancel{6}^{x} }  \\  \\   \sf\huge \implies: \frac{36}{25}

Attachments:
Similar questions