Math, asked by dineshdk3030, 7 months ago

6.A circular garden has a circum-
ference of 440m. There is a 7 m
wide border inside the garden
along its periphery. The area of
the border is : (in m)​

Answers

Answered by PokemonMaster9899
48

Given :

  • Circumference = 440 m

  • length between both gardens = 7 m

Solution :

 \large \boxed{ \boxed{ \red{circumfrence =2\pi \: r}}}

\implies 440m = 2 × 22/7 × r

 \implies \: 440m =   \large\frac{44}{7}   \small\times r

\bigstar On transposing the terms:

 \:  \:  \:  \:  \:  \:  \:  \rightarrow \:  \:  \:  \:  \large \frac{440 \times 7}{44}  \small = radius

 \implies \: radius \:  = 10 \times 7

\bigstar radius = 70m

  • Since, distance between both gardens = 7m

\therefore radius of inner circle or garden:

= 70 - 7

= 63 m

 \huge{ \boxed{ \boxed{{ \red{now}}}}}

Area of outer circle :

\:  \:  \:  \:  \:  \:  \: \rightarrow  \pi r²

 \implies \: area =  \large\frac{22}{7}  \small \times  {70}^{2}

 \implies \:   \large\frac{22}{7}   \small\times 70 \times 70

\implies 22 × 10 × 70

\implies 22 × 700

\therefore area = 15,400 m²

area of inner circle :

\:  \:  \:  \:  \:  \:  \: \rightarrow  \pi r²

 \implies \: area \:  =  \large \frac{22}{7}   \small\times  {63}^{2}

 \implies \:   \large\frac{22}{7} \small  \times 63 \times 63

\implies 22 × 9 × 63

\implies 198 × 63

\therefore area = 12,474 m²

\:  \:  \:  \:  \:  \:  \:  \: \bigstar area of outer circle = 15,400 m²

\:  \:  \:  \:  \:  \:  \:  \: \bigstar area of inner circle = 12,474 m²

Area of path :

= 15,400 m² - 12,474 m²

\therefore \large \boxed{\purple{area \: of \: path \: = \: {2926m}^2} }

Similar questions