(-6,a) divides the join of A(-3,1) and B(-8,9) also find the value of A.
Answers
Question:
Find the ratio in which the point P(-6,a) internally divides the line joining the points A(-3,1) and B(-8,9). Also, find the value of a.
Answer:
The point P(-6,a) internally divides the line joining the points A(-3,1) and B(-8,9) in the ratio 3:2 .
Also , a = 29/5 .
Note:
Section formula:
• If a point P(x,y) internally divides the line joining the points A(x1,y1) and B(x2,y2) , then the coordinates of the point P is given by;
x = (m•x2 + n•x1)/(m + n)
y = (m•y2 + n•y1)/(m + n)
• If a point P(x,y) externally divides the line joining the points A(x1,y1) and B(x2,y2) , then the coordinates of the point P is given by;
x = (m•x2 - n•x1)/(m - n)
y = (m•y2 - n•y1)/(m - n)
Solution:
Let the point P(-6,a) internally divides the line joining the points A(-3,1) and B(-8,9) in the ratio
m:n .
Thus,
As per the section formula, the x-coordinate of the point P will be given as;
=> -6 = {m•(-8) + n•(-3)}/(m + n)
=> -6 = (-8m - 3n)/(m + n)
=> -6 = -(8m + 3n)/(m + n)
=> 6 = (8m + 3n)/(m + n)
=> 6•(m + n) = 8m + 3n
=> 6m + 6n = 8m + 3n
=> 8m - 6n = 6n - 3n
=> 2m = 3n
=> m/n = 3/2
=> m:n = 3:2
Hence,
The point P(-6,a) internally divides the line joining the points A(-3,1) and B(-8,9) in the ratio 3:2 .
Also,
As per the section formula, the y-coordinate of the point P will be given as;
=> a = (m•9 + n•1)/(m + n)
=> a = (3•9 + 2•1)/(3 + 2)
=> a = (27 + 2)/5
=> a = 29/5
Hence,
Required value of a is 29/5.