Math, asked by felixfelixlouis, 3 months ago

6. Evaluate
integral of
dx/x-√x​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

\rm :\longmapsto\: Let \: A \:  =  \: \displaystyle \int \sf \: \dfrac{dx}{x -  \sqrt{x} }

Here, we use the method of Substitution,

\rm :\longmapsto\: \red{ \rm \:Put \:   \sqrt{x}  = y}

\rm :\longmapsto\: \red{ \rm \: x =  {y}^{2}}

On differentiating w. r. t. x, we get

\rm :\longmapsto\: \red{ \rm \: dx =  {2ydy}}

On substituting all these above values in given integral, we get

\rm :\longmapsto\:A  \: = \:  \displaystyle \int \sf \: \dfrac{2y}{ {y}^{2} - y}dy

 \:  \sf \:  \:  =  \:  \: 2\displaystyle \int \sf \: \dfrac{1}{y - 1} dy

 \:  \sf \:  \:  =  \:  \: 2 \:  log(y - 1)  + c

 \:  \sf \:  \:  =  \:  \: 2 \:  log( \sqrt{x}  - 1)  + c

Additional Information :-

\boxed{\red{\sf\:\displaystyle \int \sf \: sinx \: dx =  - cosx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: cosx \: dx = sinx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \:  {sec}^{2} x \: dx = tanx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \:  {cosec}^{2} x \: dx =  - cotx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: cosecx \: cotx \: dx =  - cosecx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: secx \: tanx \: dx =  secx + c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: tanx \: dx = log(secx)+ c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: cotx \: dx = log(sinx)+ c}}

\boxed{\red{\sf\:\displaystyle \int \sf \: \dfrac{dx}{x}  =  log(x)  + c}}

Similar questions