English, asked by kotechaleena2810, 9 months ago

6. Find the area of a rhombus whose perimeter is 60 cm
and one diagonal is of length 18 cm.

Answers

Answered by ZzyetozWolFF
3

Answer:

Area = 100√5 cm²

Explanation:

Given

  • Perimeter = 60cm

  • Length of diagonal = 18 cm

To find :

  • Area of rhombus = ?

Procedure :

Let's consider rhombus ABCD

Perimeter of ABCD = 60cm

Let sides of rhombus, AB = BC = CD = DA = x

Perimeter = x + x + x + x

 \implies \sf \: 60 = 4x

 \implies \sf \: x =   \frac{60}{4}

 \implies \sf \: x = 15cm

All sides of rhombus ABCD are of 15 cm.

In ∆ ABCD

AB = AD = 15 cm

BD = 20 cm

 \sf \: Semi - perimeter = \frac{15 + 15 + 20}{2}

 \sf \: Semi - perimeter = \frac{50}{2}

 \sf \: Semi - perimeter =25cm

 \rightarrow \sf \: area \:  =   \sqrt{s(s - a)(s - b)(s - c) \: }

 \rightarrow \sf \: area \:  =   \sqrt{25(25 -  15)(25 - 15)(25 - 20) \: }

 \rightarrow \sf \: area \:  =   \sqrt{25 \times 10 \times 10 \times 5 \: }

 \rightarrow \sf \: area \:  =   \sqrt{5 \times 5 \times 10 \times 10 \times 5 \: }

\rightarrow \sf \: area \:  =   50 \sqrt{5}  \:  {cm}^{2}

  \sf \: Area of ABCD = 2 \times 50 \sqrt{5}

 \sf \: area \: of \: ABCD = 100 \sqrt{5} \:  cm^{2}

Attachments:
Similar questions