Math, asked by ItzMissKomal, 3 months ago

6) Find the compound interest and amount occurring annually on ₹5000 for 3 years at the rate of 10 p.c.p.a.
₹66551
₹15566
₹65561
₹16655

Answers

Answered by riteshmarkam2016
2

Answer:

ANSWER:

(1) Here, P = ₹ 2000; R = 5 % ; N = 2 years

A=P(1+R100)N   =2000(1+5100)2   =2000(105100)2   =2000(2120)2   =2205 Rupees∴ Compound Interest after 2 years,I = Amount − Principal  =2205−2000  =205 RupeesA=P1+R100N   =20001+51002   =20001051002   =200021202   =2205 Rupees∴ Compound Interest after 2 years,I = Amount - Principal  =2205-2000  =205 Rupees

Hence, Amount = ₹ 2205 and Compound interest = ₹ 205.

(2) Here, P = ₹ 5000; R = 8 % ; N = 3 years

A=P(1+R100)N   =5000(1+8100)3   =5000(108100)3   =5000(2725)3   =6298.56 Rupees∴ Compound Interest after 3 years,I = Amount − Principal  =6298.56−5000  =1298.56 RupeesA=P1+R100N   =50001+81003   =50001081003   =500027253   =6298.56 Rupees∴ Compound Interest after 3 years,I = Amount - Principal  =6298.56-5000  =1298.56 Rupees

Hence, Amount = ₹ 6298.56 and Compound interest = ₹ 1298.56

(3) Here, P = ₹ 4000; R = 7.5 % ; N = 2 years

A=P(1+

Step-by-step explanation:

plz mark me as brilliant answer

Answered by Nikhil0204
2

ANSWER :-

C.I. =P {(1 +  \frac{R}{100} )}^{n} -P   \\  = 5000 {(1 +  \frac{10}{100}) }^{3}  - 5000 \\  = 5000 {( \frac{110}{100} )}^{3}  - 5000 \\  = 5000 \times 1.1 \times 1.1 \times 1.1 - 5000 \\  = 6655 - 5000  \\  = 1655

A = P  {(1 + \frac{R}{100}  )}^{n}  \\  = 5000 {(1.1)}^{3} \\  = 6655

HOPE THIS HELPS YOU!!!!!!!!!;!

Similar questions