Math, asked by karthis910, 10 months ago

6. Find the rate percent per annum when
a principal of 7,000 earns a S.I. of 1,680
in 16 months.
-

Answers

Answered by Ridvisha
112
SOLUTION :-


Given-


Principal ( P ) = Rs. 7000


Simple Interest ( S.I.) = Rs. 1680


Time ( T ) = 16months = 16/12 years = 4/3 years



To Find-



Rate percent per annum??



{\boxed{\boxed{\sf{\red{\:\:\:S.I.=\frac{P \times R \times T}{100}\:\:\: }}}}}



{\sf{\purple{ 1680=\frac{7000 \times R \times\frac{4}{3} }{100} }}}



{\implies{\purple{\sf{1680=\frac{7000 \times R \times 4}{100 \times 3}} }}}



{\implies{\purple{\sf{R=\frac{1680 \times 100 \times 3}{7000 \times 4} }}}}



{\implies{\purple{\sf{R=6 \times 3}}}}



{\implies{\underline{\boxed{\pink{\sf{R=18\: percent}}}}}}
Answered by BrainlyPopularman
29

GIVEN :

Principal amount = 7,000

• Simple Interest = 1,680

• Time = 16 months = (16/12) year = 4/3 year

TO FIND :

Rate = ?

SOLUTION :

• We know that –

  \\ \implies \large {\boxed{\boxed { \bold{Simple \:  \: Interest =  { \dfrac{Principal \times Rate(in \: \%) \times Time}{100}}}}}} \\

• Put the values –

  \\ \implies { \bold{1680 =  { \dfrac{7000 \times Rate(in \: \%) \times  \left( \frac{4}{3} \right) }{100}}}} \\

  \\ \implies { \bold{ \dfrac{168}{700}  \times  \dfrac{3}{4} \times 100 =   Rate(in \: \%)  }} \\

  \\ \implies { \bold{ Rate(in \: \%) = \dfrac{168}{700}  \times  \dfrac{3}{4}  \times 100  }} \\

  \\ \implies { \bold{ Rate(in \: \%) = \dfrac{504}{2800} \times 100 }} \\

  \\ \implies { \bold{ Rate(in \: \%) = \dfrac{504}{28} }} \\

  \\ \implies \large{ \boxed { \bold{ Rate= 18 \: \% }}} \\

 \\ \rule{220}{2} \\

Similar questions