Math, asked by amaanshaikh31212, 9 months ago

6. Find the separate equations of lines
represented by
x2 + 2 (cosec a) xy + y2 = 0​

Answers

Answered by MaheswariS
5

\underline{\textsf{Given:}}

\textsf{Pair of lines is}

\mathsf{x^2+2\,cosecA\,xy+y^2=0}

\underline{\textsf{To find:}}

\textsf{Separate equations of given pair of lines}

\underline{\textsf{Solution:}}

\textsf{We find out the separate eqations by using square completion method}

\mathsf{consider,}

\mathsf{x^2+2\,cosecA\,xy+y^2=0}

\mathsf{x^2+2\,cosecA\,xy=-y^2}

\mathsf{Adding\;bothsides\;by\;y^2cosec^2A}

\mathsf{x^2+2\,cosecA\,xy+y^2cosec^2A=-y^2+y^2cosec^2A}

\mathsf{(x+cosecA\,y)^2=y^2(cosec^2A-1)}

\mathsf{(x+cosecA\,y)^2=y^2cot^2A}

\mathsf{(x+cosecA\,y)^2=(y\,cotA)^2}

\mathsf{Taking\;square\;root\;on\;bothsides\;we\;get}

\mathsf{x+cosecA\,y=\pm(y\,cotA)}

\mathsf{x+cosecA\,y\pm(y\,cotA=0}

\mathsf{x+(cosecA\pm\,cotA)y=0}

\underline{\textsf{Answer:}}

\mathsf{The\;separate\;equations\;are}

\mathsf{x+(cosecA+cotA)y=0}

\mathsf{x+(cosecA-cotA)y=0}

\underline{\textsf{Find more:}}

Prove that the equation 2x^2 + 3xy - 2y^2 + 3x + y + 1 represents a pair of perpendicular lines and find the lines.

https://brainly.in/question/21181215

Similar questions