6. Find the value of a such that the quadratic
equation (a-4)X? + 2(a-4)x + 4 = 0 has equal
roots.
Answers
Answered by
0
Answer:
For having equal roots, discriminant of the quadratic equation should be equal to zero.
Discriminant = b² - 4ac
where, b is the coefficient of x, a is the coefficient of x² and c is the constant term.
Therefore,
[2(a - 12)]² - 4(a - 12)(2) = 0
→ 2²(a - 12)² = 8(a - 12)
→ 4(a - 12)² = 8(a - 12)
→ (a - 12)²/(a - 12) = 8/4
→ (a - 12) = 2
→ a = 12 + 2
→ a = 14.
Similar questions