Math, asked by apantum15, 4 months ago

6. If a - b = 3 and a + b = 5, find
(b) a2 + b2
(a) ab​

Answers

Answered by AestheticSky
2

\huge\bf{\red{\underline{\underline{\mathcal{AnSwer}}}}}

Given:-

  • a-b = 3 ... eq.1
  • a+b = 5 ... eq.2

To find:-

  • a²+b²
  • ab

Solution:-

adding eq. 1 and 2 to find the values of a and b

\implies \sf a-b+a+b=3+5

\implies \sf 2a=8

\implies \sf a = 4

putting the value of a in eq. 1

\implies \sf 4+b=3

\implies \sf -b = -1

\implies \sf b = 1

now, let's find the value of a²+b²

\implies a²+b² = (4)²+(1)²

\implies 4+1 = 5

now, let's find the value of ab

\implies a×b = 4×1 = 4

Answered by mathdude500
3

\begin{gathered}\begin{gathered}\bf Given -  \begin{cases} &\sf{a + b = 5} \\  \\ &\sf{a - b = 3} \end{cases}\end{gathered}\end{gathered}

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{ {a}^{2}  +  {b}^{2} } \\  \\ &\sf{ab}  \end{cases}\end{gathered}\end{gathered}

\large\underline\purple{\bold{Solution :-  }}

Given

:  \implies \tt \: a + b = 5 \:  -  - (i)

:  \implies \tt \: a - b = 3 \:  -    - (ii)

On adding (i) and (ii) equations, we get

:  \implies \tt \: a + b + a - b = 5 + 3

:  \implies \tt \: 2a = 8

:  \implies \tt \: a = \dfrac{ \cancel8}{ \cancel2}  = 4

:  \implies \boxed{ \red{ \tt \: a \:  =  \: 4}}

On substituting a = 4, in equation (i), we get

:  \implies \tt \: 4 + b = 5

:  \implies \tt \: b = 5 - 4

:  \implies  \boxed{ \red{\tt \: b \:  =  \: 1}}

Now,

 \red{ \bf \: To \:  find :  \:  {a}^{2}  +  {b}^{2} }

On substituting the values of a and b, we get

:  \implies \tt \:  {4}^{2}  +  {1}^{2}

:  \implies \tt \: 16 + 1

:  \implies \tt \: 17

:  \implies \tt \:  \boxed{ \purple{ \bf \:  {a}^{2}  +  {b}^{2}  = 17}}

 \red{ \bf \: To \:  find :  -  \: ab}

On substituting the values of a and b, we get

:  \implies \tt \: 4 \times 1

:  \implies \tt \: 4

:  \implies \tt \:  \boxed{ \purple{ \bf \: ab \:  =  \: 4}}

Similar questions