Math, asked by venuvardhanalugu, 1 day ago

6. If sin-¹3/5=A then find cot A.

Answers

Answered by user0888
5

\Large\textrm{$\cot A=\pm\dfrac{4}{3}$}

\Large\textrm{Explained.}

\rm{(f\circ f^{-1})(x)=x}

\rm{f(x)=\sin x}

\rm{f^{-1}(x)=\arcsin x}

\rm{\sin(\arcsin(\dfrac{3}{5}))=\sin A}

\rm{\therefore \dfrac{3}{5}=\sin A}

We know,

\cdots\longrightarrow\boxed{\rm{\sin^{2}\theta+\cos^{2}\theta=1}}

Dividing both sides,

\cdots\longrightarrow\boxed{\rm{\tan^{2}\theta+1=\dfrac{1}{\cos \theta}}}

\rm{\cos^{2}A=1-\left(\dfrac{3}{5}\right)^{2}}

\rm{\cos^{2}A=1-\dfrac{9}{25}}

\rm{\cos^{2}A=\dfrac{16}{25}}

\rm{\tan^{2}A+1=\dfrac{25}{16}}

\rm{\tan^{2}A=\dfrac{9}{16}}

\rm{\dfrac{1}{\tan^{2}A}=\dfrac{16}{9}}

\rm{\cot^{2}A=\dfrac{16}{9}}

\rm{\therefore \cot A=\pm\dfrac{4}{3}}

The sign depends on which quadrant \rm{A} lies on.

Similar questions