Math, asked by yogeeshprabhu0771, 3 months ago

6. In Fig. 3.33, PQ and RS are two mirrors placed
parallel to each other. An incident ray AB strikes
the mirror PQ at B, the reflected ray moves along
the path BC and strikes the mirror RS at C and
again reflects back along CD. Prove that
AB || CD.​

Answers

Answered by madhvitiwari094
0

Answer:

In Fig. 3.33, PQ and RS are two mirrors placed

parallel to each other. An incident ray AB strikes

the mirror PQ at B, the reflected ray moves along

the path BC and strikes the mirror RS at C and

again reflects back along CD. Prove that

AB || CD.

Answered by CommanderBrainly
2

Answer:

Step-by-step explanation:

PQ || RS ⇒ BL || CM

[∵ BL || PQ and CM || RS]

Now, BL || CM and BC is a transversal.

∴ ∠LBC = ∠MCB …(1) [Alternate interior angles]

Since, angle of incidence = Angle of reflection

∠ABL = ∠LBC and ∠MCB = ∠MCD

⇒ ∠ABL = ∠MCD …(2) [By (1)]

Adding (1) and (2), we get

∠LBC + ∠ABL = ∠MCB + ∠MCD

⇒ ∠ABC = ∠BCD

i. e., a pair of alternate interior angles are equal.

∴ AB || CD

Similar questions