6. In figure, ABCD is a cyclic quadrilateral in which AB is extended till F and BE || DC. If angleFBE=20° and DAB = 95°, then find angleADC.
Attachments:
Answers
Answered by
3
Answer:
Sum of opposite angles of a cyclic quadrilateral is 180°
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180°
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180°
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105°
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105° Now, ∠ABC + ∠CBF = 180° [linear pair]
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105° Now, ∠ABC + ∠CBF = 180° [linear pair]and ∠ABC + ∠ADC = 180° [opposite angles of cyclic quad]
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105° Now, ∠ABC + ∠CBF = 180° [linear pair]and ∠ABC + ∠ADC = 180° [opposite angles of cyclic quad]Thus, ∠ABC + ∠ADC = ∠ABC + ∠CBF
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105° Now, ∠ABC + ∠CBF = 180° [linear pair]and ∠ABC + ∠ADC = 180° [opposite angles of cyclic quad]Thus, ∠ABC + ∠ADC = ∠ABC + ∠CBF ⇒ ∠ADC = ∠CBF
Sum of opposite angles of a cyclic quadrilateral is 180°∴ ∠DAB + ∠BCD = 180° ⇒ 95° + ∠BCD = 180° ⇒ ∠BCD = 180° - 95° = 85°∵ BE || DC∴ ∠CBE = ∠BCD = 85° [alternate interior angles]∴ ∠CBF = ∠CBE + ∠FBE = 85° + 20° = 105° Now, ∠ABC + ∠CBF = 180° [linear pair]and ∠ABC + ∠ADC = 180° [opposite angles of cyclic quad]Thus, ∠ABC + ∠ADC = ∠ABC + ∠CBF ⇒ ∠ADC = ∠CBF ⇒ ∠ADC = 105° [∵∠CBF = 105°]
Answered by
6
Answer:
∠ ADC = 105°
Explanation:
Sol. Since ABCD is a cyclic quadrilateral.
∴∠ BAD + ∠ BCD = 180°
⇒ 95° + ∠ BCD = 180° ⇒ ∠ BCD = 85°
Since, BE || DC therefore, ∠BCD = ∠ CBE ⇒ ∠ CBE = 85° [Alternate angles]
Now, ∠ BCF = ∠ CBE + ∠ EBF
= 85° + 20° = 105°
Now, since exterior angle formed by producing a side of a cyclic quadrilateral, is equal to the interior opposite angle.
∠ ADC = ∠ BCF = 105°.
PLS MARK ME AS BRAINLIEST
Similar questions