6. In the adjoining figure, ABCD is a kite. If ZBCD = 52°
and ZADB = 42°, find the values of x, y and z.
[Hint. Join AC.)
Attachments:
Answers
Answered by
8
Answer:
In triangle ADB
AB=AD
Angle ABD=Angle ADB=42°=x(base angle)
angle A + angle ABD + angle ADB =180°
y+42°+42°=180°
y+84=180
y=180-84
y=96°
Similarly,In triangle BDC
BC=DC
angle CBD = angle CDB(base angle)=z°
angle C + angle CBD + angle CDB =180°
52+z+z=180°
2z=180-52
2z=128
z=128/2
z=64°
Answered by
0
Answer:
AD=AB, then, their base angle be same
so that, Angle Abc=x=52°
In triangle CBD,
CD=CB, so that their base angle also be same
Angle CBD +Angle BCD+ Angle CDB
z°+52°+z=180° Angle sum property of triangle
2z=128
then, simplify it
then, z=64
Angle BAD+Angle BDA+Angle DAB
42°+x°+y=180° Angle sum property of triangle
42°+42°+y=180°
84°+y=180°
y=180°-84°
y=96°
Similar questions