Physics, asked by sivasai7551, 1 month ago

6 ohm 8ohm 12 ohm are connected with parallel. Find the equivalent resistance

Answers

Answered by Yuseong
2

Answer :

 \boxed{\sf {   \dfrac{8}{3}   \: \Omega}}

Given Information :

  • 6Ω, 8Ω , 12Ω resistors are connected in parallel combination.

To calculate :

  • Equivalent resistance (R)

Calculation :

In parallel combination , equivalent resistance of the circuit is given by the formula,

 \boxed {\sf{ \dfrac{1}{R_p} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3} + \dots \dfrac{1}{R_n}} }

Here,

 \rm {R_1 = 6 \Omega }

 \rm {R_2 = 8 \Omega }

 \rm {R_3 = 12 \Omega }

Substituting values,

 \longrightarrow \sf {  \dfrac{1}{R_p} = \left \lgroup \dfrac{1}{6} + \dfrac{1}{8} + \dfrac{1}{12} \right \rgroup \: \Omega}

 \longrightarrow \sf {  \dfrac{1}{R_p} = \left \lgroup \dfrac{4 + 3 + 2}{24}  \right \rgroup \: \Omega}

 \longrightarrow \sf {  \dfrac{1}{R_p} = \left \lgroup \dfrac{9}{24}  \right \rgroup \: \Omega}

 \longrightarrow \sf {  \dfrac{1}{R_p} = \left \lgroup \dfrac{3}{8}  \right \rgroup \: \Omega}

After reciprocation,

 \longrightarrow \sf \red{  R_p =  \dfrac{8}{3}   \: \Omega}

Therefore, equivalent resistance of the circuit is  \sf {   \dfrac{8}{3}   \: \Omega} .

Points to remember :

In parallel combination , equivalent resistance of the circuit is given by the formula,

 \longmapsto \boxed {\sf{ \dfrac{1}{R_p} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3} + \dots \dfrac{1}{R_n}} }

In series combination , equivalent resistance of the circuit is given by the formula,

\longmapsto \boxed {\sf{ R_s = R_1 + R_2 + R_3 + \dots R_n} }

Similar questions