Math, asked by ahmadaquilkhan, 10 months ago

6.
On what sum of money will the difference between
the simple interest and the compound interest for
2 years at 5% per annum be equal to 50 ?



Attachments:

Answers

Answered by TheVenomGirl
7

Answer:-

  • Rs. 20,000

Explanation :-

Let p is required sum of money.

{ \bigstar{ \underline{According \:  to  \: the \:  question, }}}

 {\sf {Difference  \: in  \: simple  \: interest  \: and \:  compound \:  interest }} \\  { \sf{for \:  2 \:  years  : - }} \\  \\ \sf \longmapsto \: p \times  ({\frac{r}{100} )}^{2} \\  \sf \longmapsto \: 50 = p \times  ({ \frac{5}{100}) }^{2}  \\\sf \longmapsto \: 50 = p \times  \frac{1}{400} \\ \sf \longmapsto \: p = 400 \times 50 \\ \sf \longmapsto \: p = 20000

 {\therefore{ \sf{\: Sum  \: of  \: money  \: is \:  Rs \:  20,000.}}}

Answered by InfiniteSoul
2

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Question}}}}}}}

  • On what sum of money will the difference betweenthe simple interest and the compound interest for 2 years at 5% per annum be equal to 50 ?

\sf{\huge{\bold{\pink{\bigstar{\boxed{\boxed{Solution}}}}}}}

\sf{\bold{\green{\underline{\underline{Given}}}}}

Rate = 5%

Time = 2years

diff btw. C.I and S.I = Rs.50

\sf{\bold{\blue{\underline{\underline{To\:find}}}}}

principle = p = ????

\sf{\bold{\purple{\underline{\underline{Explanation}}}}}

\sf{\bold{\red{\boxed{SI = \dfrac{prt}{100} }}}}

\sf{SI = \dfrac{p\times 5\times 2}{100}}

\sf{SI = \dfrac{10p}{100}}

\sf{\bold{\red{\boxed{CI = P(1 + \dfrac{r}{100})^{time} }}}}

\sf{CI = P(1 + \dfrac{5}{100})^2} - P

\sf{CI = P(\dfrac{105}{100})^2}- P

\sf{CI = \dfrac{11025}{10000} P} - P

\sf{CI = \dfrac{11025p - 10000p}{10000}}

\sf{CI = \dfrac{1025p}{10000}}

ATQ :-

CI - SI = 50

\sf {\dfrac{1025p}{10000} - \dfrac{10p}{100}} = 50

\sf{\dfrac{1025p - 1000p}{10000} = 50}

\sf{\dfrac{25p}{10000} = 50 }

\sf { p = \dfrac{50 \times{ 10000}}{{25}}}

\sf{p = \dfrac{\cancel{50}\times 100}{\cancel{25}}}

\sf{p = Rs.20000}

\sf{\bold{\orange{\boxed{principle = Rs.20000}}}}

________________❤

Similar questions