Math, asked by 10432samyukthas, 8 months ago

6. Prove that 5 – 2 √3 is an irrational number

Answers

Answered by Anonymous
11

 \underline{ \boxed{ \sf  \red \bigstar GIVEN  }}

 \sf \rightarrow 5 - 2 \sqrt{3}

 \underline{ \boxed{ \sf  \green \bigstar PROVE  }}

 \sf \rightarrow 5 - 2 \sqrt{3}  \: is \: an \: irrational \: no.

 \underline{ \boxed{ \sf  \orange \bigstar SOLUTION}}

 \sf  ☽ let \: 5 - 2 \sqrt{3}  \: is \: an \: rational \: no.

 \sf  ✵  and \: 5 - 2 \sqrt{3}  =  \frac{p}{q} , \\  \sf where \: p,q \: any \: integer \: q  \not= 0

 \sf❂ squaring \: both \: sides

 \sf  ⇝  {(5 - 2 \sqrt{3})}^{2}   = {( \frac{p}{q})}^{2}

 \sf  ⚝by \: using \:  {(a - b)}^{2}    =  {a}^{2}  - 2ab +  {b}^{2}

 \sf  ⇝  {5}^{2}  - 2(5)( 2\sqrt{3} ) +  {(2 \sqrt{3} )}^{2}  =   \frac{ {p}^{2} }{ {q}^{2} }

 \sf  ⇝  25 - 20 \sqrt{3}  +  12 =   \frac{ {p}^{2} }{ {q}^{2} }

 \sf  ⇝  37 - 20 \sqrt{3}  =   \frac{ {p}^{2} }{ {q}^{2} }

 \sf  ⇝  37   =   \frac{ {p}^{2} }{ {q}^{2} } - 20 \sqrt{3}

 \sf❂ 37 \: is \: rational \: but \:  \frac{ {p}^{2} }{ {q}^{2} }   +  20 \sqrt{3}  \: is \: irrational \\  \sf bcz \:  \sqrt{3}  \: is \: irrational \: no.

 \sf  ⚝rational \: no. \: can't \: be \: equal \: to \: irrational \\  \sf no.  \: Hence, by \: contradiction \: my \: assumption \: is \: wrong. \\  \sf i.e. \: 5 - 4 \sqrt{3}  \: is \: a\:rational \: no. \: is \: wrong ❌

 \sf Therefore, 5 - 4 \sqrt{3}  \: is \: an \: irrational \: no. \\  \mathbb{ \huge HENCE  \: PROVED}

Answered by Anonymous
5

U HAVE ALREADY GOT UR ANS

Similar questions