Math, asked by akshk6266s, 10 months ago

6. Simplify: 3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​

Answers

Answered by lalitameena9055
2

Answer:

3√2/√6=3√2/√2*√3=√3

2√3/√6=√2

4√3/√6=2√2

therefore

√3-√3+√2+√2-2√2-√2

=-√2

Step-by-step explanation:

Answered by Dhruv4886
0

The answer is 3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​ = 0

Given:

3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​

To find:

Simplify: 3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​

Solution:

Given 3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​

= \frac{3 \sqrt{2} }{\sqrt{6}-\sqrt{3}  } + \frac{2\sqrt{3} }{\sqrt{6}+2 } - \frac{4\sqrt{3} }{\sqrt{6}- \sqrt{2} }

Rationalize the denominators in each fraction as given below

⇒   \frac{3 \sqrt{2} }{\sqrt{6}-\sqrt{3}  } [ \frac{\sqrt{6}+\sqrt{3}  }{\sqrt{6} +\sqrt{3}  } ] =  \frac{3\sqrt{12}+3\sqrt{6}   }{(\sqrt{6})^{2} -(\sqrt{3})^{2}   } = \frac{3\sqrt{12}+3\sqrt{6}   }{3 } =  \frac{3(\sqrt{12}+\sqrt{6} )}{3 } =  \sqrt{12}+\sqrt{6}    

⇒  \frac{2\sqrt{3} }{\sqrt{6}+2 } [\frac{ \sqrt{6}-2}{ \sqrt{6}-2} ] =  \frac{2\sqrt{18} - 4\sqrt{3}  }{(\sqrt{6})^{2} +2^{2}  } =  \frac{2\sqrt{18} - 4\sqrt{3}  }{2 } =  \frac{2(\sqrt{18} - 2\sqrt{3})  }{2 } =  \sqrt{18} - 2\sqrt{3}

⇒  \frac{4\sqrt{3} }{\sqrt{6}- \sqrt{2} } [ \frac{\sqrt{6}+ \sqrt{2} }{\sqrt{6}+\sqrt{2} } ] =  \frac{4\sqrt{18} + 4\sqrt{6} }{(\sqrt{6})^{2} - (\sqrt{2} )^{2} } =  \frac{4\sqrt{18} + 4\sqrt{6} }{4} =  \frac{4(\sqrt{18} + \sqrt{6} )}{4} =  \sqrt{18} + \sqrt{6}  

From above calculations

\frac{3 \sqrt{2} }{\sqrt{6}-\sqrt{3}  } + \frac{2\sqrt{3} }{\sqrt{6}+2 } - \frac{4\sqrt{3} }{\sqrt{6}- \sqrt{2} }  =  \sqrt{12}+\sqrt{6} + \sqrt{18} - 2\sqrt{3}  -\sqrt{18} - \sqrt{6}

= √12 - 2√3

= √4×3 - 2√3  

= 2√3 - 2√3  

= 0  

Therefore,

3✓2/✓6-✓3 + 2✓3/✓6+2 - 4✓3/✓6-✓2​ = 0

#SPJ2

Similar questions