Math, asked by Anonymous, 10 months ago

6. Solve for x
2 {x}^{2}  + 6 \sqrt{3} x - 60 = 0

Answers

Answered by simi76503
8

Answer:

 {2x}^{2}  + 6 \sqrt{3} x - 60 = 0

 {x}^{2}  + 3 \sqrt{3} x - 30 = 0

 { x}^{2}  + 5 \sqrt{3} x - 2 \sqrt{3 } x - 30 = 0

x(x + 5 \sqrt{3} ) - 2 \sqrt{3} (x + 5 \sqrt{3} )

(x + 5 \sqrt{3} )(x - 2 \sqrt{3} )

Please mark it as brainliest :-)

Answered by mysticd
0

 Given \: 2x^{2} + 6\sqrt{3}x - 60 = 0

/* Divide each term by 2 , we get */

 \implies x^{2} + 3\sqrt{3}x - 30 = 0

/* Splitting the middle term, we get

 \implies x^{2} + 5\sqrt{3}x - 2\sqrt{3}x - 30 = 0

 \implies x( x + 5\sqrt{3} ) - 2\sqrt{3} ( x + 5\sqrt{3})

 \implies ( x + 5\sqrt{3} )(x - 2\sqrt{3}) = 0

 \implies x + 5\sqrt{3}  = 0 \: Or \: x - 2\sqrt{3} = 0

 \implies x = -  5\sqrt{3}  = 0 \: Or \: x  = 2\sqrt{3}

•••♪

Similar questions