Math, asked by pragyarani2801, 1 day ago

6. Write an expression for the value of a commodity after 20 years if its value decreases at a monthly rate of 2%.​​

Answers

Answered by cutequeen6430
3

Step-by-step explanation:

 ᴛʜᴇ ᴀɴsᴡᴇʀ ɪs ғ(ɴ) = 1500 * 0.8ⁿ

ʟᴇᴛ ᴛʜᴇ ғᴜɴᴄᴛɪᴏɴ ʙᴇ ғ(ɴ) ᴡʜᴇʀᴇ ɴ ɪs ɴᴜᴍʙᴇʀ ᴏғ ʏᴇᴀʀs

ᴀғᴛᴇʀ 20% ɪs ʟᴏsᴛ, ᴛʜᴇ ᴠᴀʟᴜᴇ ᴛʜᴀᴛ ʀᴇᴍᴀɪɴs ɪs 80% ᴏғ 1500:

1500 : 100%

x : 80%

1500 : 100% = x : 80%

x = 1500 * 80% : 100%

x = 1500 * 80/100

x = 1500 * 0.8

ғᴏʀ ᴇᴀᴄʜ ʏᴇᴀʀ ᴡᴇ ᴍᴜsᴛ ᴀᴅᴅ ᴇxᴘᴏɴᴇɴᴛ, sᴏ ᴛʜᴇ ғᴜɴᴄᴛɪᴏɴ ɪs:

ғ(ɴ) = 1500 * 0.8ⁿ

ʙ) ᴛʜᴇ ᴀɴsᴡᴇʀ ɪs $768

ᴡᴇ ʜᴀᴠᴇ ғᴜɴᴄᴛɪᴏɴ: ғ(ɴ) = 1500 * 0.8ⁿ

ᴀɴᴅ ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ ᴛʜᴇ ɴᴜᴍʙᴇʀ ᴏғ ʏᴇᴀʀs ɪs 3: ɴ = 3

ғ(3) = 1500 * 0.8³ = 1500 * 0.512 = 768

ᴄ) ᴛʜᴇ ᴀɴsᴡᴇʀ ɪs 5 ʏᴇᴀʀs

ᴡᴇ ʜᴀᴠᴇ ғᴜɴᴄᴛɪᴏɴ: ғ(ɴ) = 1500 * 0.8ⁿ

ᴀɴᴅ ᴡᴇ ᴋɴᴏᴡ ᴛʜᴀᴛ ᴛʜᴇ ᴠᴀʟᴜᴇ ɴᴇᴇᴅs ᴛᴏ ʙᴇ ʟᴇss ᴛʜᴇɴ $500: ғ(ɴ) = <500

1500 * 0.8ⁿ < 500

0.8ⁿ < 500 / 1500

0.8ⁿ < 0.33

ʟᴏɢ(0.8ⁿ) < ʟᴏɢ(0.33)

ɴ * ʟᴏɢ(0.8) < ʟᴏɢ(0.33)

ɴ * -0.0969 < -0.4815

ɴ < -0.4815 / -0.0969

ɴ < 5

Answered by ShiNely
10

Answer:

[

=  \geqslant \pink{rate = 2\% \: monthy = 24 \: yearly \: =  time = 20 \: years}

 \:  \:  \\ to \: find \:  \orange{ =  \geqslant } \: expression \: for \: value \: of \: commodity</p><p></p><p>

 =  \geqslant cos \:  = \: p  \: \infty  (1 -  \frac{r}{100})

 =  &gt; p  \: \infty (1 -  \frac{24}{100}) {}^{20}

 =  \geqslant p \:  \infty  =   (\frac{76}{100} ) {}^{20}

 =  &gt; p  \:  \infty \:  (  \frac{19}{25} ) {}^{20}

so \: answer =  \geqslant  \\  values \: of \: commodity \: be \: = p  \: \infty  (\frac{19}{25}) {}^{20}

Similar questions