Math, asked by kenny80, 9 months ago

6^x+6^y=42
x +y =3 . find x and y ​

Answers

Answered by Anonymous
2

Answer:

\sf{The \ values \ of \ x \ and \ y \ are \ 1 \ and \ 2 \ respectively}

\sf{or \ 2 \ and \ 1 \ respectively. }

Given:

\sf{6^{x}+6^{y}=42}

\sf{and \ x+y=3}

To find:

\sf{The \ value \ of \ x \ and \ y.}

Solution:

\sf{6^{x}+6^{y}=42...(1)}

\sf{x+y=3...(2)}

\sf{From \ equation(2), \ we \ get}

\sf{x=3-y}

\sf{Substitute \ x=3-y \ in \ equation(1), \ we \ get}

\sf{6^{3-y}+6^{6}=42}

\sf{\therefore{\dfrac{6^{3}}{6^{y}}+6^{y}=42}}

\sf{\therefore{\dfrac{216}{6^{y}}+6^{y}=42}}

\sf{Substitute \ 6^{y}=m}

\sf{\therefore{\dfrac{216}{m}+m=42}}

\sf{Multiply \ throughout \ by \ m, \ we \ get}

\sf{216+m^{2}-42m=0}

\sf{\therefore{m^{2}-42m+216=0}}

\sf{\therefore{m=\dfrac{-b\pm\sqrt{b^{2}-4ac}}{2a}}}

\sf{\therefore{m=\dfrac{42\pm\sqrt{1764-4(216)(1)}}{2}}}

\sf{\therefore{m=\dfrac{42\pm\sqrt{900}}{2}}}

\sf{\therefore{m=\dfrac{42\pm30}{2}}}

\sf{\therefore{m=21\pm15}}

\sf{\therefore{m=36 \ or \ m=6}}

\sf{when \ m=36}

\sf{6^{y}=36}

\sf{\therefore{6^{y}=6^{2}}}

\sf{\therefore{y=2}}

\sf{Substitute \ y=2 \ in \ equation(1), \ we \ get}

\sf{x+2=3}

\sf{\therefore{x=1}}

\sf{when \ m=6}

\sf{6^{y}=6}

\sf{\therefore{y=1}}

\sf{Substitute \ y=1, \ in \ equation(1), \ we \ get}

\sf{x+1=3}

\sf{\therefore{x=2}}

\sf\purple{\tt{\therefore{The \ values \ of \ x \ and \ y \ are \ 1 \ and \ 2 \ respectively}}}

\sf\purple{\tt{or \ 2 \ and \ 1 \ respectively. }}

Answered by aryaman7839
1

Answer:

Your answer , x=1 and y=2

Step-by-step explanation:

Given x+y=3

6^x+6^y=42

Now , x+y=3

y=3-x

also , we can say , 6^x-6^(3-x)= 42

Multiplying with

6x

we get

6^2x+216=(42.6)^x

=6^2x + 42.6^x+216= 0

By middle term splitting , we get :

⇒6^2x−36.6x−6.6x+216=0

⇒6(6^x - 6 ) - 6(6^x-6) =0

= 6(6^x-6) = 6(6^x-6)

As we can see ,

L.H.S= R.H.S

.:. x = 1

and since,

y=3-x

Putting the value of x in equation

⇒y=3-1

y=2

Similar questions