60% of 50 studente passed in examinatiom how many students are failed in examination
Answers
(1 - 0,6) × 50 students
0,4 × 50 students
20 students
So, 20 students are failed the examination
Step-by-step explanation:
Answer:
a = 2 , b=2a=2,b=2
Step-by-step explanation:
\begin{gathered} The \: mid\: point \: M(1,2a+1) \: of\\\: the \:line \: segment \: joining \: the \: points \\\: A(x_{1},y_{1})=(2a,4)\: and\\ \: B(x_{2},y_{2}) = (-2,3b) .\end{gathered}ThemidpointM(1,2a+1)ofthelinesegmentjoiningthepointsA(x1,y1)=(2a,4)andB(x2,y2)=(−2,3b).
\implies M(1,2a+1)= \big(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2}\big)⟹M(1,2a+1)=(2x1+x2,2y1+y2)
\begin{gathered} \implies M(1,2a+1)= \big(\frac{2a-2}{2},\frac{4+3b}{2}\big)\\=\big(\frac{2(a-1)}{2},\frac{4+3b}{2}\big)\end{gathered}⟹M(1,2a+1)=(22a−2,24+3b)=(22(a−1),24+3b)
\implies M(1,2a+1)=\big(a-1,\frac{4+3b}{2}\big)⟹M(1,2a+1)=(a−1,24+3b)
\implies 1= a-1 ; 2a+1=\frac{4+3b}{2}⟹1=a−1;2a+1=24+3b
\implies 2 = a ; 2(2a+1)=4+3b⟹2=a;2(2a+1)=4+3b
Substitute a = 2,we get
\implies a = 2 , 2(4+1)=4+3b⟹a=2,2(4+1)=4+3b
\implies a = 2 , 10=4+3b⟹a=2,10=4+3b
\implies a = 2 , 10-4=3b⟹a=2,10−4=3b
\implies a = 2 , \frac{6}{3}=b⟹a=2,36=b
\implies a = 2 , b=2⟹a=2,b=2
Therefore,
a = 2 , b=2a=2,b=2
••••♪