Math, asked by saurabhmittal1760, 1 year ago

64 ki power 1/2 ki power 1/6 ki power 2

Answers

Answered by WritersParadise01
6

\bf{Question} :-

\sf ({64})^{  { (\frac{1}{2}) }^{ { (\frac{1}{6}) }^{(2)} } }

\bf{Solution} :-

\sf ({64})^{  { (\frac{1}{2}) }^{ { (\frac{1}{6}) }^{(2)} } }  \\  \\ \sf  = ({8})^{\cancel2 \times  \frac{1}{\cancel2} \times  \frac{1}{6} \times 2  }  \\  \\ \sf = ( {8})^{ \frac{1}{6} \times 2 }  \\  \\ \sf = ( {2})^{3 \times  \frac{1}{6}  \times 2}  \\  \\ (multiply \: 2 \: and \: 3) \\  \\  \sf= ( {2})^{\cancel6 \times \frac{1}{\cancel6}  }  \\  \\ \sf =  {(2)}^{1}  \\  \\ \sf = 2 \: (answer)

Answered by BrainlyVirat
5

Find : 64 ki power 1/2 ki power 1/6 ki power 2

Step by step explanation :

 \tt{ (64){}^{ (\frac{1}{2})  {}^{ (\frac{1}{6}) } {}^{(2)}  } }

Thus, We can write 64 as the square of 2 numbers i.e

 \tt{64 = 8 {}^{2}}

Thus,

We get :

 \tt{ (8 {}^{2} ){}^{ (\frac{1}{2})  {}^{ (\frac{1}{6}) } {}^{(2)}  } }

Now,

Using the identity,

 \tt{(a {}^{m})  {}^{n} =  {a}^{m \times n}}

  \therefore(8 ){}^{ \cancel2 \times  \frac{1}{ \cancel2} \times  \frac{1}{6}  \times 2 }

Thus, Now we get :

 \tt{(8) {}^{ \frac{2}{6} }}

Now, 2/6 = 1/3 , i.e

 \tt{(8) {}^{ \frac{1}{3} }}

Now,

We know that,

 \tt{ {a}^{ \frac{1}{3}  } =  \sqrt[3]{a}}

Therefore, We need to follow final step i.e :

 \tt{8 { }^{ \frac{1}{3} }   =  \sqrt[3]{8}}

Now, We know the cube root of 8 i.e 2

Thus,

 \tt{ \tt{ \sqrt[3]{8}} = 2}

Thus,

Answer to your question is 2.

Similar questions