64x3+125y3-64z3+240xyz solve it using algebraic identities
Anonymous:
Check the question again. Is this right?
Answers
Answered by
3
Use the identity a³ + b³ + c³ - 3abc = (a+b+c)(a²+b²+c² - ab - bc - ca)
In your question, a = 4x, b = 5y, c = -4z
Substituting these in above identity,
(4x)³ + (5y)³ + (-4z)³ - 3X(4x)(5y)(-4z) =
(4x+5y-4z)(16x² + 25y² + 16z² - 20xy + 20yz + 16zx)
In your question, a = 4x, b = 5y, c = -4z
Substituting these in above identity,
(4x)³ + (5y)³ + (-4z)³ - 3X(4x)(5y)(-4z) =
(4x+5y-4z)(16x² + 25y² + 16z² - 20xy + 20yz + 16zx)
Answered by
10
a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ca)
so, (4x)³ + (5y)³ + (-4z)³ - 3X(4x)(5y)(-4z)
= (4x+5y-4z)(16x² + 25y² + 16z² - 20xy + 20yz + 16zx)
so, (4x)³ + (5y)³ + (-4z)³ - 3X(4x)(5y)(-4z)
= (4x+5y-4z)(16x² + 25y² + 16z² - 20xy + 20yz + 16zx)
Similar questions