Math, asked by Shwetasharma99736, 11 months ago


₹6540 amounts to ₹8447.50 at
 12\frac{1}{2} per \: annum
Find Time​

Answers

Answered by Alcaa
1

Time =

Step-by-step explanation:

We have to determine the time period where ₹ 6,540 amounts to ₹ 8447.50 at   12\frac{1}{2} per annum.

Assuming interest is calculated for compound interest.

Let P = Principal sum of money

    R = Rate of interest

    T = Time period

    A = Amount of money

As we know that the formula for calculating amount in case of compound interest is given by;

                   \text{Amount}=\text{Principal} \times (1+\text{Rate of interest})^{\text{Time}}

                                            Or

                              A=P\times (1+R)^{T}

                                 

Now, in the question we are provided with P = Rs 6,540 , A = ₹8,447.50 and R =  12\frac{1}{2} % per annum and Time period = T

So,            Amount    =  6,540\times (1+\frac{25}{2 \times 100} )^{T}

                ₹8,447.50  =  6,540\times (1+0.125 )^{T}

                ₹8,447.50  =  6,540\times (1.125 )^{T}

                        1.125^{T} =\frac{8447.50}{6540}

                        1.125^{T} =\frac{31}{24}

Now, taking log on both sides, we get;

                       T \times ln(1.125) = ln(\frac{31}{24} )

                        T  = \frac{ln(\frac{31}{24} )}{ln(1.125)}    

                        T = 2.2 years

Therefore, the time period is 2.2 years.

Similar questions