Math, asked by parthacorpsegrinder, 11 months ago

69. The length of the two tangents of a
circle from a point is 30 cm each. If the
tangents form an angle of 60° with
each other, the distance between the
point and the centre of the circle is
meble
[A] 60 cm
[B] 35 cm
[C] 2013 cm
[D] 302 cm​

Answers

Answered by melichinnuorme
1

luv uh meri jaan ;p ♥️_♥️ umaaah

Attachments:
Answered by SushmitaAhluwalia
1

The distance between the point and center of the circle is 35 cm.

  • Given,

        lengths of the tangents = 30 cm

            PQ = PR = 30 cm

  • Angle between tangents = 60°

               ∠QPR = 60°

  • Let O be the center of the circle.
  • OP bisects ∠QPR.

                  ∠OPR = ∠OPQ = 30°

  • Also PQ⊥OQ ⇒ ∠OQP = 90°
  • In ΔOPQ,

                  cos30=\frac{PQ}{OP}

                  \frac{\sqrt{3} }{2}=\frac{30}{OP}

                  OP\sqrt{3}=60

                  OP=\frac{60}{\sqrt{3} }

                  OP = 34.64

                  OP≅35 cm

                   

Attachments:
Similar questions