(6a+3b+3c-5)-(6a-4b+0c+8)
Answers
Answered by
1
Answer:
The sum of (6a+4b−c+3),(2b−3c+4),(11b−7a+2c−1) and (2c−5a−6) is (−6a+17b)
Step-by-step explanation:
(6a+4b−c+3)+(2b−3c+4)+(11b−7a+2c−1)+(2c−5a−6)
⇒ 6a+4b−c+3+2b−3c+4+11b−7a+2c−1+2c−5a−6
Now arranging and combining the like terms,
⇒ (6a−7a−5a)+(4b+2b+11b)+(−c−3c+2c+2c)+(3+4−1−6)
⇒ −6a+17b
∴ The sum of (6a+4b−c+3),(2b−3c+4),(11b−7a+2c−1) and (2c−5a−6) is (−6a+17b)
Answered by
1
Answer: 7B + 3C - 13
STEP BY STEP :-)
Let's simplify step-by-step.
6a+3b+3c−5−(6a−4b+0c+8)
Distribute the Negative Sign:
=6a+3b+3c−5+−1(6a−4b+0c+8)
=6a+3b+3c+−5+−1(6a)+−1(−4b)+−1(0c)+(−1)(8)
=6a+3b+3c+−5+−6a+4b+0+−8
Combine Like Terms:
=6a+3b+3c+−5+−6a+4b+0+−8
=(6a+−6a)+(3b+4b)+(3c)+(−5+0+−8)
=7b+3c+−13
Answer:
=7b+3c−13
Hope this helps:-)
Similar questions