Math, asked by StarTbia, 1 year ago

6x-3y=-10 ; 3x+5y-8=0. Solve this equations by Cramer’s method.

Answers

Answered by abhi178
98
Given,
6x - 3y = -10
3x + 5y - 8 = 0

arrange both equations in general form ax + by + c = 0 .
e.g., 6x - 3y + 10 = 0 -----(1)
3x + 5y - 8 = 0 -----(2)
now, use Cramer's rule,
\bold{\frac{x}{-3\times-8-10\times5}=\frac{-y}{6\times-8-10\times3}=\frac{1}{6\times5-(-3)\times3}}
=> x/(24 - 50) = -y/(-48 - 30) = 1/(30 +9)

=> x/-26 = -y/-78 = 1/39

=> x = -26/39 = -2/3 and y = 78/39 = 2

hence, x = -2/3 and y = 2
Answered by Robin0071
105
solution:-

given by :-
6x - 3y =  - 10.........(1) \\ 3x + 5y  =   8............(1) \\ solving \: eq \: (1) \: and \: (2) \: by \: cramers \: method \\ Δ =  \binom{6 \:  \:  \:  - 3}{3 \:  \:  \: \:  \:  5}  = 30 + 9 = 39 \\ Δx =  \binom{ - 10 \:  \:  \:  - 3}{ 8 \:  \:  \:  \:  \:  \:  \:  \: 5}  =  - 50  +  24 =  - 26 \\ Δy =  \binom{6 \:  \:  \:  - 10}{  3 \:  \:  \:  \: \:  \:  \:   \:   8}  =  48 + 30 =  78 \\ x =  \frac{Δx}{Δ}  =  \frac{ - 26}{39} =   - \frac{2}{3}   \\  \\ y =  \frac{Δy}{Δ}  =  \frac{78}{39}  = 2
here ( x , y) = ( -2/3 , 2)

■I HOPE ITS HELP■
Similar questions