Math, asked by ashokray13204, 1 year ago

6x square - 6(a+b)x + (4/3a square + 10/3ab + 4/3b square) = 0 solve for x.

Answers

Answered by ayushmall70
16
hope it will help you
Attachments:

ashokray13204: bro x will be a+12b/3
Answered by harendrachoubay
17

x=\dfrac{2a+b}{3} ,\dfrac{a+2b}{3}

Step-by-step explanation:

We have,

6x^{2} -6(a+b)x+(\dfrac{4}{3}b^{2} +\dfrac{10}{3} ab+\dfrac{4}{3}b^{2})=0

To find, the value of x = ?

Divided by 2, we get

3x^{2} -3(a+b)x+(\dfrac{2}{3}b^{2} +\dfrac{5}{3} ab+\dfrac{2}{3}b^{2})=0

D=b^{2} -4ac

=[3(a+b)]^{2} -4(3)(\dfrac{2}{3}b^{2} +\dfrac{5}{3} ab+\dfrac{2}{3}b^{2})

=9(a^{2} +2ab+b^{2})-4(2a^{2} +5ab+2b^{2})

=9a^{2} +18ab+9b^{2}-8a^{2} -10ab-2b^{2}

=a^{2} +b^{2} -2ab

==(a-b)^{2}

x=\frac{-b±\sqrt{D}}{2a}

x=\frac{-3(a+b)±\sqrt{(a-b)^2}}{2\times 3}

=\dfrac{3a+3b+a-b}{6} ,\dfrac{3a+3b-a+b}{6}

=\dfrac{4a+2b}{6} ,\dfrac{2a+4b}{6}

=\dfrac{2(2a+b)}{6} ,\dfrac{2(a+2b)}{6}

=\dfrac{2a+b}{3} ,\dfrac{a+2b}{3}

Hence, x=\dfrac{2a+b}{3} ,\dfrac{a+2b}{3}

Similar questions