Math, asked by paramjeetkaliramna, 6 months ago

6x2 (15x2 + x - 6) ÷ 3x(3x + 2)​

Answers

Answered by snehitha2
19

Answer :

10x² - 6x

Step-by-step explanation :

          =\frac{6x^{2} (15x^{2} +x-6)}{3x(3x+2)} \\\\\\ =\frac{6x^2(15x^2+10x-9x-6)}{3x(3x+2)} \\\\\\ =\frac{6x^2[5x(3x+2)-3(3x+2)]}{3x(3x+2)} \\\\\\ =\frac{6x^2[(3x+2)(5x-3)]}{3x(3x+2)} \\\\\\ =\frac{6x^2}{3x} \times\frac{(3x+2)(5x-3)}{3x+2} \\\\\\ =2x \times (5x-3) \\\\\\ =10x^2-6x

__________________________

     Quadratic Polynomials :

         ✯ It is a polynomial of degree 2

         ✯ General form :

                   ax² + bx + c  = 0

                    \boxed{\bf x=\frac{-b\pm\sqrt{b^2-4ac} }{2a} }

         ✯ Determinant, D = b² - 4ac

         ✯ Based on the value of Determinant, we can define the nature of roots.

                 D > 0 ; real and unequal roots

                 D = 0 ; real and equal roots

                 D < 0 ; no real roots i.e., imaginary

         ✯ Relationship between zeroes and coefficients :

                   ✩ Sum of zeroes = -b/a

                   ✩ Product of zeroes = c/a

Answered by Anonymous
53

Given

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2(15x^2 + x - 6)}{3x(3x + 2)}}

Solution

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2(15x^2 + x - 6)}{3x(3x + 2)}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2(15x^2 +10x - 9x - 6)}{3x(3x + 2)}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2[5x(3x + 2) -3(3x + 2)]}{3x(3x + 2)}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2[(5x - 3)(3x + 2)]}{3x(3x + 2)}}

\tt:\implies\: \: \: \: \: \: \: \: {\dfrac{6x^2}{3x} × \dfrac{(5x - 3)\not{(3x + 2)}}{\not{(3x + 2)}}}

\tt:\implies\: \: \: \: \: \: \: \: {2x × (5x - 3)}

\tt:\implies\: \: \: \: \: \: \: \: {10x^2 - 6x}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬


Anonymous: Great!
Similar questions