Math, asked by syedrazamisbahi1869, 7 hours ago

7 -2 0
-2 6 -2
0 -2 5
Find eigenvalues and eigenvectors

Answers

Answered by sunil0816
3

STEP BY STEP PROCESS

Any Problem Ask Questions..

Attachments:
Answered by hukam0685
2

Eigen values of the matrix are \bf \lambda_1  = 3, \lambda_2  = 6,and\:\lambda_3  = 9 \\ and their corresponding eigen vectors are \bf v_1  = (1,2,2), v_2  = (-2,-1,2),and\:v_3  = (2,-2,1)\\

Given:

  • \left[\begin{array}{ccc}7&-2&0\\-2&6&-2\\0&-2&5\end{array}\right] \\

To find:

  • Find the Eigen values and eigen vectors of the matrix.

Solution:

Concept to be used:

Characteristics equation \bf [A-\lambda \: I]X=O

Step 1:

Write the characteristics equation.

\left[\begin{array}{ccc}7&-2&0\\-2&6&-2\\0&-2&5\end{array}\right] -  \lambda\left[\begin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}\right]  =\left[\begin{array}{ccc}0\\0\\0\end{array}\right] \\ \\

\left[\begin{array}{ccc}7 -  \lambda&-2&0\\-2&6 - \lambda&-2\\0&-2&5  - \lambda \end{array}\right]  =\left[\begin{array}{ccc}0\\0\\0\end{array}\right] \\ \\

Determinant of characteristics equation equal to zero.

\left |\begin{array}{ccc}7 -  \lambda&-2&0\\-2&6 - \lambda&-2\\0&-2&5  - \lambda \end{array}\right |   =0 \\

Expand the determinant along R1.

(7 -  \lambda) \{((6 - \lambda)(5 - \lambda) - 4) + 2( - 2(5 - \lambda) - 0) \} = 0 \\

(7 -  \lambda) (\lambda ^{2} - 11\lambda + 26)  - 20  + 4\lambda = 0 \\

 (7 \lambda ^{2} - 77\lambda + 182 -    \lambda ^{3} + 11 \lambda ^{2} - 26\lambda - 20  + 4\lambda = 0 \\

\bf  -  {\lambda}^{3}  + 18 {\lambda}^{2}  - 99\lambda + 162 = 0 \\

Step 2:

Solve the characteristics equation and find eigen values.

Find the first root of the equation by hit and trial method.

Put \lambda =  3

-  {(3)}^{3}  + 18 {(3)}^{2}  - 99(3) + 162 = 0 \\

0 = 0 \\

Thus,

\bf \lambda = 3 is one root of the equation and ( \lambda - 3)is one factor.

Find the other roots by dividing the cubic polynomial by the known factor.

  \lambda - 3 \: ) - {\lambda}^{3}  + 18 {\lambda}^{2}  - 99\lambda + 162 ( -{\lambda}^{2} + 15 {\lambda} - 54 \\ - {\lambda}^{3}    + 3 {\lambda}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ ( + ) \:  \:  \:  \: ( - ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 15{\lambda}^{2} - 99{\lambda} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ 15{\lambda}^{2} - 45{\lambda} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:   \\ ( - ) \:  \:  \:  \:  \:  \: ( + ) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  -  -  -  -  -  -   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  - 54{\lambda} + 162 \\ - 54{\lambda} + 162 \\ ( + ) \:  \:  \:  \: ( - ) \\  -  -  -  -  -  \\ 0 \\  -  -  -  -  -

Thus,

The quotient polynomial is the other factor.

Factorise the -{\lambda}^{2} + 15 {\lambda} - 54 = 0 to find the other two factors.

\bf \lambda  = 9 \\

or

\bf \lambda  = 6 \\

Thus,

The eigen values of the matrix are

\bf \lambda_1  = 3, \lambda_2  = 6,\lambda_3  = 9 \\

Step 3:

Find the eigen vector of the matrix.

[A-\lambda  \: I \: ]X=0

Find the eigen vector for eigen value 3.

\left[\begin{array}{ccc}7 - 3&-2&0\\-2&6 -3&-2\\0&-2&5  -3 \end{array}\right]\left[\begin{array}{ccc}x\\y\\z\end{array}\right]  =\left[\begin{array}{ccc}0\\0\\0\end{array}\right] \\ \\

\left[\begin{array}{ccc}4&-2&0\\-2&3&-2\\0&-2&2 \end{array}\right]\left[\begin{array}{ccc}x\\y\\z\end{array}\right]  =\left[\begin{array}{ccc}0\\0\\0\end{array}\right] \\ \\

4x - 2y = 0...eq1 \\  - 2x + 3y - 2z = 0...eq2 \\  - 2y + 2z = 0 ...eq3\\

Add eq1 and eq3

4x - 4y + 2z = 0 ...eq4\\

use eq2 and 4 to find the values of x,y,z

 \frac{x}{6 - 8}  =  \frac{ - y}{ - 4 + 8}  =  \frac{z}{8 - 12} \\

 \frac{x}{ - 2}  =  \frac{ - y}{ 4}  =  \frac{z}{ - 4} \\

or

 \frac{x}{ 1}  =  \frac{ y}{ 2}  =  \frac{z}{ 2} \\

Eigen vector for  \lambda_1 = 3 \\ is

\left[\begin{array}{ccc}1\\2\\2\end{array}\right]

According to the same method, we can calculate the eigen vectors of the other two eigen values.

Eigen vector for  \lambda_2 = 6 \\ is

\left[\begin{array}{ccc}-2\\-1\\2\end{array}\right]

Eigen vector for  \lambda_3 = 9 \\ is

\left[\begin{array}{ccc}2\\-2\\1\end{array}\right]

Thus,

Eigen values of the matrix are \bf \lambda_1  = 3, \lambda_2  = 6,\lambda_3  = 9 \\ and their corresponding eigen vectors are \bf v_1  = (1,2,2), v_2  = (-2,-1,2),v_3  = (2,-2,1)\\

Learn more:

1) find the eigenvalues and eigen vectors of the matrix

1 1 3

1 5 1

3 1 1

https://brainly.in/question/34940317

2) 2) Find the adjoint and the inverse of the matrix \left[\begin{array}{ccc}cos\alpha&-sin\alpha\\sin\alpha&cos\alpha\end{arr...

https://brainly.in/question/7029406

#SPJ2

Similar questions