Math, asked by simikhan42, 1 year ago

(7/25*-15/28)-(-3/5*4/9)​

Answers

Answered by AbhijithPrakash
5

Answer:

\left(\dfrac{7}{25}\cdot \dfrac{-15}{28}\right)-\left(-\dfrac{3}{5}\cdot \dfrac{4}{9}\right)=\dfrac{7}{60}\quad \left(\mathrm{Decimal:\quad }\:0.11667\dots \right)

Step-by-step explanation:

\left(\dfrac{7}{25}\cdot \dfrac{-15}{28}\right)-\left(-\dfrac{3}{5}\cdot \dfrac{4}{9}\right)

\mathrm{Remove\:parentheses}:\quad \left(a\right)=a,\:-\left(-a\right)=a

=\dfrac{7}{25}\cdot \dfrac{-15}{28}+\dfrac{3}{5}\cdot \dfrac{4}{9}

\mathrm{Now,\:let's\:simplify,\:}\dfrac{7}{25}\cdot \dfrac{-15}{28}

\dfrac{7}{25}\cdot \dfrac{-15}{28}

\mathrm{Cross-cancel\:common\:factor:}\:7

=\dfrac{1}{25}\cdot \dfrac{-15}{4}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\cdot \dfrac{c}{d}=\dfrac{a\:\cdot \:c}{b\:\cdot \:d}

=\dfrac{1\cdot \left(-15\right)}{25\cdot \:4}

\mathrm{Remove\:parentheses}:\quad \left(-a\right)=-a

=\dfrac{-1\cdot \:15}{25\cdot \:4}

\mathrm{Multiply\:the\:numbers:}\:25\cdot \:4=100

=\dfrac{-15}{100}

\mathrm{Apply\:the\:fraction\:rule}:\quad \dfrac{-a}{b}=-\dfrac{a}{b}

=-\dfrac{15}{100}

\mathrm{Cancel\:the\:common\:factor:}\:5

=-\dfrac{3}{20}

\mathrm{So,\:our\:equation\:would\:be;}

-\dfrac{3}{20}+\dfrac{3}{5}\cdot \dfrac{4}{9}

\mathrm{Now,\:let's\:simplify\:}\dfrac{3}{5}\cdot \dfrac{4}{9}

\dfrac{3}{5}\cdot \dfrac{4}{9}

\mathrm{Cross-cancel\:common\:factor:}\:3

=\dfrac{1}{5}\cdot \dfrac{4}{3}

\mathrm{Multiply\:fractions}:\quad \dfrac{a}{b}\cdot \dfrac{c}{d}=\dfrac{a\:\cdot \:c}{b\:\cdot \:d}

=\dfrac{1\cdot \:4}{5\cdot \:3}

\mathrm{Multiply\:the\:numbers:}\:1\cdot \:4=4

=\dfrac{4}{5\cdot \:3}

\mathrm{Multiply\:the\:numbers:}\:5\cdot \:3=15

=\dfrac{4}{15}

\mathrm{So,\:now\:our\:equation\:is\:}-\dfrac{3}{20}+\dfrac{4}{15}

\textrm{So, to add the fractions we'll need to make the denominator of these fractions equal}

\mathrm{Least\:Common\:Multiplier\:of\:}20,\:15

\mathrm{Prime\:factorization\:of\:}20:\quad 2\cdot \:2\cdot \:5

\mathrm{Prime\:factorization\:of\:}15:\quad 3\cdot \:5

\mathrm{Multiply\:each\:factor\:the\:greatest\:number\:of\:times\:it\:occurs\:in\:either\:}20\mathrm{\:or\:}15

=2\cdot \:2\cdot \:5\cdot \:3

\mathrm{Multiply\:the\:numbers:}\:2\cdot \:2\cdot \:5\cdot \:3=60

\mathrm{Now,\:Adjust\:Fractions\:based\:on\:the\:LCM}

\mathrm{Multiply\:each\:numerator\:by\:the\:same\:amount\:needed\:to\:multiply\:its} \mathrm{corresponding\:denominator\:to\:turn\:it\:into\:the\:LCM}\:60

\mathrm{For}\:\dfrac{3}{20}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:3

\dfrac{3}{20}=\dfrac{3\cdot \:3}{20\cdot \:3}=\dfrac{9}{60}

\mathrm{For}\:\dfrac{4}{15}:\:\mathrm{multiply\:the\:denominator\:and\:numerator\:by\:}\:4

\dfrac{4}{15}=\dfrac{4\cdot \:4}{15\cdot \:4}=\dfrac{16}{60}

=-\dfrac{9}{60}+\dfrac{16}{60}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}:\quad \dfrac{a}{c}\pm \dfrac{b}{c}=\dfrac{a\pm \:b}{c}

=\dfrac{-9+16}{60}

\mathrm{Add/Subtract\:the\:numbers:}\:-9+16=7

=\dfrac{7}{60}


simikhan42: thanks but you worked so hard infact too much i solved it in very short method & have the same Answer as your's....
AbhijithPrakash: No problems!! :)
Similar questions